Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors

Abstract

RELEASE of intracellular Ca2+ by inositol 1,4,5-trisphosphate (InsP3) occurs through specific receptor proteins1 which are ligand-activated Ca2+ channels . Changes in intracellular Ca2+ regulate many cellular functions3. This Ca2+ release is a discontinuous quantal process in which successive increments of InsP3 transiently release precise amounts of Ca2+ (refs 4–6). Possible explanations of quantal Ca2+ release have included rapid degradation of InsP3, reciprocity of Ca2+ release and sequestration, desensitization of InsP3 receptors7, or actions of InsP3 on discrete compartments of Ca2+ with variable sensitivity to InsP3 (ref. 4). We successfully reconstituted InsP3-induced Ca2+ flux in vesicles containing only purified InsP3 receptor protein2. The reconstituted vesicles retain the regulatory features of the InsP3 receptor, including phosphory-lation sites8 and modulation of Ca2+ release by adenine nucleo-tides9. Using these reconstituted vesicles, we show here that quantal flux of Ca2+ elicited by InsP3 is a fundamental property of its receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ferris, C. D. & Snyder, S. H. A. Rev. Physiol. 54, 469–488 (1991).

    Article  Google Scholar 

  2. Ferris, C. D., Huganir, R. L., Supattapone, S. & Snyder, S. H. Nature 342, 87–89 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Berridge, M. J. & Irvine, R. F. Nature 341, 197–204 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Muallem, S., Pandol, S. J. & Beeker, T, G. J. biol. Chem. 264, 205–212 (1989).

    CAS  PubMed  Google Scholar 

  5. Parker, I. & Inorra, I. Science 250, 977–979 (1991).

    Article  ADS  Google Scholar 

  6. Meyer, T. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 87, 3841–3845 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Champeil, P. et al. J. biol. Chem. 264, 17665–17673 (1989).

    CAS  PubMed  Google Scholar 

  8. Ferris, C. D., Huganir, R. L., Bredt, D. S., Cameron, A. M. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 88, 2232–2235 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Ferris, C. D., Huganir, R. L. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 87, 2147–2151 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Huganir, R. L. & Racker, E. J. biol. Chem. 257, 9372–9378 (1982).

    CAS  PubMed  Google Scholar 

  11. Hopfield, J. F., Tank, D. W., Greengard, P. & Huganir, R. L. Nature 336, 677–679 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Irvine, R. F. FEBS Lett. 263, 5–9 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Supattapone, S., Worley, P. F., Baraban, J. M. & Snyder, S. H. J. biol. Chem. 263, 1530–1534 (1988).

    CAS  PubMed  Google Scholar 

  14. Mignery, G. A., Newton, C. L., Archer, B. T. III & Sudhof, T. C. J. biol. Chem. 265, 12679–12685 (1990).

    CAS  PubMed  Google Scholar 

  15. Mignery, G. A. & Sudhof, T. C. EMBO J. 9, 3893–3898 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Furuichi, T. et al. Nature 342, 32–38 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Miyawaki, A. et al. Proc. natn. Acad. Sci. U.S.A. 88, 4911–4915 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Danoff, S. K. et al. Proc. natn. Acad. Sci. U.S.A. 88, 2951–2955 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Nakagawa, T., Okano, H., Furuichi, T., Aruga, J. & Mikoshiba, K. Proc. natn. Acad. Sci. U.S.A. 88, 6244–6248 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Missiaen, L., Taylor, C. W. & Berridge, M. J. Nature 352, 241–244 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Maeda, N. et al. J. biol. Chem. 266, 1109–1116 (1991).

    CAS  PubMed  Google Scholar 

  22. Sudhof, T. C., Newton, C. L., Archer, B. T. III, Ushkaryov, Y. A. & Mignery, G. A. EMBO J. 10, 3199–3206 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ross, C. A. et al. Soc. Neurosci. Abstr. (1991).

  24. Meyer, T., Wensel, T. & Stryer, L. Biochemistry 297, 32–37 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, C., Cameron, A., Huganir, R. et al. Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. Nature 356, 350–352 (1992). https://doi.org/10.1038/356350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing