Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum

Abstract

BEING topologically equivalent to the extracellular space, the lumen of the endoplasmic reticulum (ER) provides a unique folding environment for newly synthesized proteins. Unlike other compartments in the cell where folding occurs, the ER is oxidizing and therefore can promote the formation of disulphide bonds1. The reducing agent dithiothreitol, when added to living cells, inhibits disulphide formation with profound effects on folding2. Taking advantage of this effect, we demonstrate here that folding of influenza haemagglutinin is energy dependent. Metabolic energy is required to support the correct folding and disulphide bond formation in this well characterized viral glycoprotein, to rescue misfolded proteins from disulphide-linked aggregates, and to maintain the oxidized protein in its folded and oligomerization-competent state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Freedman, R. B. Cell 57, 1069–1072 (1989).

    Article  CAS  Google Scholar 

  2. Braakman, I., Helenius, J. & Helenius, A. EMBO J. (in the press).

  3. Braakman, I., Hoover-Litty, H., Wagner, K. R. & Helenius, A. J. Cell Biol. 114, 401–411 (1990).

    Article  Google Scholar 

  4. Creighton, T. E. Prog. Biophys. Molec. Biol. 33, 231–297 (1978).

    Article  CAS  Google Scholar 

  5. Clarke, B. L. & Weigel, P. H. J. biol. Chem. 260, 128–133 (1985).

    CAS  PubMed  Google Scholar 

  6. Podbilewicz, B. & Mellman, I. EMBO J. 9, 3477–3487 (1990).

    Article  CAS  Google Scholar 

  7. Hurtley, S. M., Bole, D. G., Hoover-Litty, H., Helenius, A. & Copeland, C. S. J. Cell Biol. 108, 2117–2126 (1989).

    Article  CAS  Google Scholar 

  8. Copeland, C. S., Doms, R. W., Bolzau, E. M., Webster, R. G. & Helenius, A. J. Cell Biol. 103, 1179–1191 (1986).

    Article  CAS  Google Scholar 

  9. Haas, I. G. & Wabl, M. Nature 306, 387–389 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Bole, D. G., Hendershot, L. M. & Kearney, J. F. J. Cell Biol. 102, 1558–1566 (1986).

    Article  CAS  Google Scholar 

  11. Dorner, A. J., Bole, D. G. & Kaufman, R. J. J. Cell Biol. 105, 2665–2674 (1987).

    Article  CAS  Google Scholar 

  12. Kassenbrock, C. K., Garcia, P. D., Walter, P. & Kelly, R. B. Nature 333, 90–93 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Kozutsumi, Y., Segal, M., Normington, K., Gething, M.-J. & Sambrook, J. Nature 332, 462–464 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Bochkareva, E. S., Lissin, N. M. & Girshovich, A. S. Nature 336, 254–257 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Laminet, A. A., Ziegelhoffer, T., Georgopoulos, C. & Plückthun, A. EMBO J. 9, 2315–2319 (1990).

    Article  CAS  Google Scholar 

  16. Martin, J. et al. Nature 352, 36–42 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Ellis, R. J. & Van der Vies, S. M. A. Rev. Biochem. 60, 321–347 (1991).

    Article  CAS  Google Scholar 

  18. Doms, R. W., Keller, D. S., Helenius, A. & Balch, W. E. J. Cell Biol. 105, 1957–1969 (1987).

    Article  CAS  Google Scholar 

  19. Lévy, F., Gabathuler, R., Larsson, R. & Kvist, S. Cell 67, 265–274 (1991).

    Article  Google Scholar 

  20. Clairmont, C., Demaio, A. and Hirschberg, C. J. Cell Biol. 115, 255a (1991).

    Google Scholar 

  21. Kassenbrock, C. K. & Kelly, R. B. EMBO J. 8, 1461–1467 (1989).

    Article  CAS  Google Scholar 

  22. Munro, S. & Pelham, H. R. B. Cell 46, 291–300 (1986).

    Article  CAS  Google Scholar 

  23. Gething, M.-J. & Sambrook, J. Semin. Cell Biol. 1, 65–72 (1990).

    CAS  PubMed  Google Scholar 

  24. Rothman, J. E. Cell 59, 591–601 (1989).

    Article  CAS  Google Scholar 

  25. Pelham, H. R. B. Cell 46, 959–961 (1986).

    Article  CAS  Google Scholar 

  26. Flynn, G. C., Chappel, T. G. & Rothman, J. E. Science 245, 385–390 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Dorner, A. J., Wasley, L. C. & Kaufman, R. J. Proc. natn. Acad. Sci. U.S.A. 87, 7429–7432 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Gething, M.-J., McCammon, K. & Sambrook, J. Cell 46, 939–950 (1986).

    Article  CAS  Google Scholar 

  29. Gottlieb, C., Baenziger, J. & Kornfeld, S. J. biol. Chem. 250, 3303–3309 (1975).

    CAS  Google Scholar 

  30. Balch, W. E., Elliott, M. M. & Keller, D. S. J. Cell Biol. 261, 14681–14689 (1986).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braakman, I., Helenius, J. & Helenius, A. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356, 260–262 (1992). https://doi.org/10.1038/356260a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356260a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing