Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions

Abstract

INVOLVEMENT of the Hox genes in regional specifications of the vertebrate body axis is suggested by sequence similarity with the homeotic selector genes of Drosophila, the conservation of a collinear relationship between genomic organization and site of expression, and mutational analysis1–5. Subdivision of vertebrate embryo hindbrain neuroepithelium into lineage compartments6 (rhombomeres7,8) underlies segmental patterning of neuronal differentiation9. The rhombomere boundaries delimit domains of expression of Hox genes10–12, presumed to be determinants of rhombomere phenotype, suggesting that Hox genes confer positional value13; the formation of rhombomere 4 (r4) is followed by strong expression of Hox-2.9within its confines14. If the Hox genes are determinants, their expression should be autonomous from the developmental stage at which regional commitment becomes fixed and irreversible. We have transplanted the future r4 region (from state-9 – chick embryos) into the more anterior position of r2 and probed for Hox-2.9 transcripts. We report here that Hox-2.9 was expressed in the ectopic r4 as strongly as in the normal r4, whereas reciprocal grafts of future r2 to r4 position did not express Hox-2.9. The phenotype of ectopic rhombomeres developed according to their original position, as demonstrated by retrograde tracing of efferent cranial nerve nuclei. As early as stage-9 – (six somites), both Hox-2.9 expression and segment identity are autonomous in the chick embryo hindbrain, independent both of position in the neuroepithelium and of signals from the underlying mesoderm15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graham, A., Papalopulu, N. & Krumlauf, R. Cell 57, 367–378 (1989).

    Article  CAS  Google Scholar 

  2. Duboule, D. & Dolle, P. EMBO J. 8, 1497–1505 (1989).

    Article  CAS  Google Scholar 

  3. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Harding, K. et al. Science 229, 1236–1242 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Akam, M. Cell 57, 347–349 (1989).

    Article  CAS  Google Scholar 

  6. Fraser, S., Keynes, R. & Lumsden, A. Nature 344, 431–435 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Gräper, L. Arch, mikrosk. Anat Entw Mech. 83, 371–426 (1913).

    Article  Google Scholar 

  8. Lumsden, A. Trends Neurosci. 13, 329–335 (1990).

    Article  CAS  Google Scholar 

  9. Lumsden, A. & Keynes, R. Nature 337, 424–428 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Gaunt, S. J. Development 101, 51–60 (1987).

    CAS  Google Scholar 

  11. Murphy, P., Davidson, D. R. & Hill, R. E. Nature 341, 156–159 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Wilkinson, D. G. et al. Nature 341, 405–409 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Hunt, P. et al. Nature 353, 861–864 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Sundin, O. H. & Eichele, G. Genes Dev. 4, 1267–1276 (1990).

    Article  CAS  Google Scholar 

  15. Frohmann, M., Boyle, M. & Martin, G. Development 110, 589–608 (1990).

    Google Scholar 

  16. Maden, M. et al. Development 111, 35–44 (1991).

    CAS  PubMed  Google Scholar 

  17. Hamburger, V. & Hamilton, H. J. Morph. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  18. Mangold, O. Naturwissenschaften 21, 761–766 (1933).

    Article  ADS  Google Scholar 

  19. Holtfreter, J. Wilhelm Roux Arch. Entw Mech. Org. 134, 446–550 (1936).

    Article  Google Scholar 

  20. Hemmati-Brivanlou, A., Stewart, R. M. & Harland, R. M. Science 250, 800–802 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Sharp, C. R. & Gurdon, J. B. Development 109, 765–774 (1990).

    Google Scholar 

  22. Ruiz i Altaba, A. Development 108, 595–604 (1990).

    CAS  PubMed  Google Scholar 

  23. Murphy, P. & Hill, R. E. Development 111, 61–74 (1991).

    CAS  Google Scholar 

  24. Lufkin, T. et al. Cell 66, 1105–1119 (1991).

    Article  CAS  Google Scholar 

  25. Chisaka, O., Musci, T. S. & Capecchi, M. R. Nature 355, 516–520 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Wilkinson, D. & Green, J. in Postimplantation Mouse Embryos, a Practical Approach (eds Rickwood, D. & Cockcroft, D. L.) 155–171 (IRL, Oxford 1990).

    Google Scholar 

  27. Whiting, J. et al. Genes Dev. 5, 2048–2059 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guthrie, S., Muchamore, I., Kuroiwa, A. et al. Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 356, 157–159 (1992). https://doi.org/10.1038/356157a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356157a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing