Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning

Abstract

ONE advantage of using conjugated polymers in semiconductor applications is that they can be processed using techniques well established for conventional polymers. We reported recently that poly(p-phenylenevinylene) could be used as the active layer in a light-emitting diode1, producing yellow/green emission. We have now found that related copolymers, comprising a combination of different arylene units, can be chemically tuned to provide a range of materials with considerably improved properties for this and other applications. By incorporating two different leaving groups into a precursor copolymer, we can selectively eliminate one of these, to give a conjugated/non-conjugated copolymer, or both, to give a fully conjugated copolymer. This allows us to induce local variations in the Π-Π* electronic energy gap at both the molecular and supramolecular level. Variations at the molecular level can act to trap excitons, hindering their migration to quenching sites, and we find that these materials give strongly enhanced quantum yields for electroluminescence (by a factor of up to 30). They also allow control of the colour of emission. Variations at the supramolecular level, by patterning the films to control the progress of conversion, allow the production of structures suitable for multicolour displays. The ability to pattern the film also allows for fabrication of optical waveguides, as regions with different energy gaps have different refractive indices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Burroughes, J. H. et al. Nature 347, 539–541 (1990).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Wessling, R. A. J. Polym. Sci., Polym. Symp. 72, 55–56 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Lahti, P. M., Modarelli, D. A., Denton, F. R., Lenz, R. W. & Karasz, F. E. J. Am. chem. Soc. 110, 7258–7259 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Lenz, R. W., Han, C.-C. & Lux, M. Polymer 30, 1041–1047 (1989).

    CAS  Article  Google Scholar 

  5. 5

    Tokito, S., Momii, T., Murata, H., Tsutsui, T. & Saito, S. Polymer 31, 1137–1141 (1990).

    CAS  Article  Google Scholar 

  6. 6

    Ohnishi, T., Noguchi, T., Nikano, T., Hirooka, M. & Murase, I. Synth. Metals 41–43, 309–312 (1991).

    Article  Google Scholar 

  7. 7

    Han, C.-C. & Elsenbaumer, R. L. Synth. Metals 41–43, 849–854 (1991).

    Article  Google Scholar 

  8. 8

    Askari, S. H., Rughooputh, S. D. & Wudl, F. Synth. Metals 29, E129–134 (1989).

    CAS  Article  Google Scholar 

  9. 9

    Burn, P. L., Bradley, D. D. C., Brown, A. R., Friend, R. H. & Holmes, A. B. Synth. Metals 41–43, 261–264 (1991).

    Article  Google Scholar 

  10. 10

    Swatos, W. J. & Gordon, B. Polym. Prep. (Am. Chem. Soc. Div. Polym. Chem) 31(1), 505–506 (1990).

    CAS  Google Scholar 

  11. 11

    Burn, P. L. et al. J. chem. Soc., Chem. Commun. 32–34 (1992).

  12. 12

    Braun, D. & Heeger, A. J. Appl. Phys. Lett. 58, 1982–1984 (1991).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bradley, D. D. C. Chem. Brit. 27, 719–723 (1991).

    Google Scholar 

  14. 14

    Wong, K. S. et al. J. Phys. C. (Solid State Phys.) 20, L187–L194 (1987).

    CAS  Article  Google Scholar 

  15. 15

    Bradley, D. D. C. & Friend, R. H. J. Phys. condensed Matter 1, 3671–3678 (1989).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Ziemelis, K. E. et al. Phys. Rev. Lett. 66, 2231–2234 (1991).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Halliday, D. A., Bradley, D. D. C., Burn, P. L., Friend, R. H. & Holmes, A. B. Synth. Metals 41–43, 931–934 (1991).

    Article  Google Scholar 

  18. 18

    Bradley, D. D. C. et al. Springer Series on Solid States Sciences 99, Electronic Properties of Conjugated Polymers IV (ed. Kuzmany, H.) (Springer, Berlin, in the press).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burn, P., Holmes, A., Kraft, A. et al. Chemical tuning of electroluminescent copolymers to improve emission efficiencies and allow patterning. Nature 356, 47–49 (1992). https://doi.org/10.1038/356047a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing