Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vortices on accretion disks

Abstract

EVERY rotating cosmic fluid that can be observed sufficiently closely displays either vortices or magnetic flux tubes on its surface; examples are tornadoes in the Earth's atmosphere1, the Great Red Spot and other vortices in Jupiter's atmosphere, and sunspots. We suggest here that hot accretion disks also produce coherent objects, and that these vortices and magnetic flux tubes will cause significant dissipation and other observable physical effects. They will facilitate the escape of collimated radiation from deep within hot disks, producing spectral changes and time variability in the radiation from the disk. In the case of active galactic nuclei, modification of X-ray spectra due to the presence of vortices on accretion disks permits us to explain several observational puzzles, including short-term variability and the low degree of linear polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bengtsson, L. & Lighthill, J. (eds) Intense Atmospheric Vortices (Springer, Berlin, 1982).

    Google Scholar 

  2. Ingersoll, A. P. Science 248, 308 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Tuominen I. Moss D. & Rüdiger, G. (eds) The Sun and Cool Stars; Activity, Magnetism, Dynamos (Springer, Berlin, 1991).

    Google Scholar 

  4. Casinelli, J. P. in The Origin of Nonradiative Heating/Momentum in Hot Stars (eds Underhill, A. B. & Michilitsianos, A. G.) NASA 2358, 2 (NASA, 1985).

    Google Scholar 

  5. Sommeria, J., Meyers, S. D. & Swinney, H. L. Nature 331, 689 (1988).

    Article  ADS  Google Scholar 

  6. Antipov, S. V., Nezlin, E. N., Snezhkin, E. N. & Trubnikov, A. S. Nature, 323, 238 (1986).

    Article  ADS  Google Scholar 

  7. Burns, J. A. in Formation of Planetary Systems (ed. Brahic, A.) 403 (Cepadues-Editions, Toulon, 1982).

    Google Scholar 

  8. Milne-Thompson, L. M. Theoretical Aerodynamics (MacMillan, London, 1948).

    MATH  Google Scholar 

  9. Abramowicz, M. A. & Piran, T. Astrophys. J. 247, L7 (1980).

    Article  ADS  Google Scholar 

  10. Dowling, T. E. & Spiegel, E. A. Ann. N.Y. Acad. Sci. 617, 190 (1990).

    Article  ADS  Google Scholar 

  11. Hopfinger, E. J. & Browand, F. K. Nature 295, 393–395 (1982).

    Article  ADS  Google Scholar 

  12. Abramowicz, M. A., Bao, G., Lanza, A. & Zhang, X.-H. in Proc. 23rd ESLAB Symp. Two Topics in X-ray Astronomy, ESA SP-296 (eds Hunt, J. & Battrick, B.) (1989).

    Google Scholar 

  13. Abramowicz, M. A., Bao, G., Lanza, A. & Zhang, X.-H. Astr. Astrophys. 245, 454 (1991).

    ADS  Google Scholar 

  14. Coleman, H. H. & Shields, G. A. Astrophys. J. 363, 415 (1990).

    Article  ADS  Google Scholar 

  15. Frank, J., King, A. R. & Raine, D. J. Accretion Power in Astrophysics, Ch. 5, 76 (Cambridge University Press, (1985).

    Google Scholar 

  16. Day, C. S. R., Fabian, A. C., George, I. M. & Kunieda, H. Mon. Not. R. astr. Soc. 247, 15P (1990).

    ADS  CAS  Google Scholar 

  17. Acosta-Pulido, J. A., Pérez-Fournon, I., Calvani, M. & Wilson, A. S. Astrophys. J. 365, 119 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Abramowicz, M. A., Jaroszyński, M. & Sikora, M. Astr. Astrophys. 63, 221 (1978).

    ADS  Google Scholar 

  19. Netzer, H. in Active Galactic Nuclei (eds Courvoisier, T. J.-L. K., Mayer, M.) 58 (Springer, Berlin, 1990).

    Google Scholar 

  20. Laor, A. & Netzer, H. Mon. Not. R. astr. Soc. 238, 897 (1990).

    Article  ADS  Google Scholar 

  21. Padovani, P. Astr. Astrophys. 209, 27 (1989).

    ADS  Google Scholar 

  22. Sun, W.-H. & Malkan, M. A. Astrophys. J. 346, 68 (1989).

    Article  ADS  Google Scholar 

  23. Wandel, A. in Proc. IAU Symp. No. 134, Active Galactic Nuclei (Kluwer, Dordrecht, 1989).

    Google Scholar 

  24. Bath, G. T., Evans, W. D. & Papaloizou, J. Mon. Not. R. astr. Soc. 167, 7P (1974).

    Article  ADS  Google Scholar 

  25. Mittaz, J. P. D. & Branduardi-Raymont, G. Mon. Not. R. astr. Soc. 238, 1029 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Zelik, M., Hall, D. S., Deldman, P. A. & Walter, F. Sky Telesc. 57, 132 (1979).

    ADS  Google Scholar 

  27. McWilliams, J. C. J. Fluid Mech. 219, 361 (1990).

    Article  ADS  Google Scholar 

  28. Meacham, S. P., Flierl, G. R. & Send, U. Dyn. Atmos. Oceans 14, 333–386 (1990).

    Article  ADS  Google Scholar 

  29. McWilliams, J. C. J. Fluid Mech. 146, 21 (1984).

    Article  ADS  Google Scholar 

  30. Maltrud, M. E. & Vallis, G. K. J. Fluid Mech. 228, 321 (1991).

    ADS  Google Scholar 

  31. Rhines, P. B. & Young, W. R. J. Fluid Mech. 122, 347 (1984).

    Article  ADS  Google Scholar 

  32. Ingersoll, A. P. & Cuong, P. G. J. atmos. Sci. 38, 2067 (1981).

    Article  ADS  Google Scholar 

  33. Williams, G. P. & Wilson, R. J. J. atmos. Sci. 45, 207 (1988).

    Article  ADS  Google Scholar 

  34. Marcus, P. S. J. Fluid. Mech. 215, 393–430 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  35. Sommeria, J., Nore, C., Dumont, T. & Robert, R. C.R. Acad. Sci. Paris 312, 999–1005 (1991).

    ADS  Google Scholar 

  36. Qian, Z., Spiegel, E. A. & Proctor, M. R. E. Stab. Appl. Anal. Cont. media 1, 73 (1991).

    Google Scholar 

  37. Ting, A. C., Matthaeus, W. H. & Montgomery, D. Phys. Fluids. 29, 3261 (1986).

    Article  ADS  Google Scholar 

  38. Silaev, I. I. & Skvortsov, A. T. in Nonlinear World 2 (eds Bar'yakhtar, V. G., Chernousenko, V. S., Erokhin, N. S., Sitenko, A. G. & Zakharovz, V. E.) 1007 (World Scientific, Singapore, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramowicz, M., Lanza, A., Spiegel, E. et al. Vortices on accretion disks. Nature 356, 41–43 (1992). https://doi.org/10.1038/356041a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356041a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing