Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nature of biological electron transfer

Abstract

Powerful first-order analysis of intraprotein electron transfer is developed from electron-transfer measurements both in biological and in chemical systems. A variation of 20 Å in the distance between donors and acceptors in protein changes the electron-transfer rate by 1012-fold. Protein presents a uniform electronic barrier to electron tunnelling and a uniform nuclear characteristic frequency, properties similar to an organic glass. Selection of distance, free energy and reorganization energy are sufficient to define rate and directional specificity of biological electron transfer, meeting physiological requirements in diverse systems.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Chance, B. & Nishimura, M. Proc. natn. Acad. Sci. U.S.A. 46, 19–24 (1960).

    ADS  CAS  Article  Google Scholar 

  2. Devault, D. & Chance, B. Biophys. J. 6, 825–847 (1966).

    ADS  CAS  Article  Google Scholar 

  3. Mitchell, P. Nature 191, 144–148 (1961).

    ADS  CAS  Article  Google Scholar 

  4. Devault, D. Q. Rev. Biophys. 13, 387–564 (1980).

    CAS  Article  Google Scholar 

  5. Marcus, R. A. J. chem. Phys. 24, 966–978 (1956).

    ADS  CAS  Article  Google Scholar 

  6. Marcus, R. A. & Sutin, N. Biochim. biophys. Acta 811, 265–322 (1985).

    CAS  Article  Google Scholar 

  7. Levich, V. G., & Dogonadze, R. R. Dokl. Akad. Nauk USSR 124, 123–126 (1959).

    CAS  Google Scholar 

  8. Jortner, J. J. chem. Phys. 64, 4860–4867 (1976).

    ADS  CAS  Article  Google Scholar 

  9. Hopfield, J. J. Proc. natn. Acad. Sci. U.S.A. 71, 3640–3644 (1974).

    ADS  CAS  Article  Google Scholar 

  10. Michel, H., Deisenhofer, J. & Epp, O. EMBO J. 5, 2445–2451 (1986).

    CAS  Article  Google Scholar 

  11. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H. & Rees, D. C. Proc. natn Acad. Sci. U.S.A. 84, 5730–5734 (1987).

    ADS  CAS  Article  Google Scholar 

  12. Chang, C. H. et al. FEBS Lett. 205, 82–86 (1986).

    CAS  Article  Google Scholar 

  13. Gunner, M. R. & Dutton, P. L. J. Am. chem. Soc. 111, 3400–3412 (1989).

    CAS  Article  Google Scholar 

  14. Therien, M. J. et al. in Electron Transfer in Inorganic, Organic and Biological Systems (eds Bolton, J., McLendon, G. L.&Mataga, N.) 191–199 (American Chemical Society, Washington DC 1991).

    Book  Google Scholar 

  15. Cowan, J. A., Upmacis, R. K., Beratan, D. N., Onuchic, J. N. & Gray, H. B. Ann. N. Y. Acad. Sci. 550, 68–84 (1988).

    ADS  CAS  Article  Google Scholar 

  16. Closs, G. L. & Miller, J. R. Science 240, 440–447 (1988).

    ADS  CAS  Article  Google Scholar 

  17. Fox, L. S., Kozik, M., Winkler, J. R. & Gray, H. B. Science 247, 1069–1071 (1990).

    ADS  CAS  Article  Google Scholar 

  18. Wasielewski, M. R., Niemczyk, M. P., Svec, W. A. & Pewitt, E. B. J. Am. chem. Soc. 107, 1080–1082 (1985).

    CAS  Article  Google Scholar 

  19. Joran, A. D. et al. Nature 327, 508–511 (1987).

    ADS  CAS  Article  Google Scholar 

  20. Franzen, S., Goldstein, R. F. & Boxer, S. G. J. phys. Chem. 94, 5135–5149 (1990).

    CAS  Article  Google Scholar 

  21. Gaines, G. L., O'Neil, M. P., Svec, W. A., Niemczyk, M. P. & Wasielewski, M. R. J. Am. chem. Soc. 113, 719–721 (1991).

    CAS  Article  Google Scholar 

  22. Wilier, J. R., Beitz, J. V. & Huddleston, R. K. J. Am. chem. Soc. 106, 5057–5068 (1984).

    Article  Google Scholar 

  23. Meade, T. J., Gray, H. B. & Winkler, J. R. J. Am. chem. Soc. 111, 4353–4356 (1989).

    CAS  Article  Google Scholar 

  24. Knapp, S. et al. J. Am. chem. Soc. 113, 4010–4013 (1991).

    CAS  Article  Google Scholar 

  25. Parson, W. W., Clayton, R. K. & Codgell, R. J. Biochim. biophys. Acta 387, 265–277 (1975).

    CAS  Article  Google Scholar 

  26. Schenck, C. C., Blankenship, R. E. & Parson, W. W. Biochim. biophys. Acta 680, 44–59 (1982).

    CAS  Article  Google Scholar 

  27. Chidsey, C. E. D., Kirmaier, C., Holten, D. & Boxer, S. G. Biochim. biophys. Acta 766, 424–437 (1985).

    Article  Google Scholar 

  28. Holten, D., Windsor, M. W., Parson, W. W. & Thornber, J. P. Biochim. biophys. Acta 501, 112–126 (1978).

    CAS  Article  Google Scholar 

  29. Shopes, R. J. & Wraight, C. A. Biochim. biophys. Acta 806, 348–356 (1985).

    CAS  Article  Google Scholar 

  30. Shuvalov, V. A. & Klevanik, A. V. FEBS Lett. 160, 51–55 (1983).

    CAS  Article  Google Scholar 

  31. Holzapfel, W. et al. Proc. natn. Acad. Sci. U.S.A. 87, 5168–5172 (1990).

    ADS  CAS  Article  Google Scholar 

  32. Michel-Beyerle, M. E. et al. Biochim. biophys. Acta 932, 52–70 (1988).

    CAS  Article  Google Scholar 

  33. Parson, W. W., Chu, Z. T. & Warshel, A. Biochim biophys Acta 1017, 251–272 (1990).

    CAS  Article  Google Scholar 

  34. Lockhart, D. J., Kirmaier, C., Holten, D. & Boxer, S. G. J. phys. Chem. 94, 6987–6995 (1990).

    CAS  Article  Google Scholar 

  35. Holzapfel, W. et al. Chem. Phys. Lett. 160, 1–7 (1989).

    ADS  CAS  Article  Google Scholar 

  36. Giangiacomo, K. M. & Dutton, P. L. Proc. natn. Acad. Sci. U.S.A. 86, 2658–2662 (1989).

    ADS  CAS  Article  Google Scholar 

  37. Takahashi, E. & Wraight, C. A. FEBS Lett. 283, 140–144 (1991).

    CAS  Article  Google Scholar 

  38. Shopes, R. J., Holten, D., Levine, L. & Wraight, C. A. Photosyn. Res. 12, 165–180 (1987).

    CAS  Article  Google Scholar 

  39. Gamow, G. Z. Phys. 51, 204–212 (1928).

    ADS  CAS  Article  Google Scholar 

  40. Beratan, D. N., Betts, J. N. & Onuchic, J. N. Science 252, 1285–1288 (1991).

    ADS  CAS  Article  Google Scholar 

  41. McLendon, G. Accts chem. Res. 21, 160–167 (1988).

    CAS  Article  Google Scholar 

  42. Tiede, D. M. et al. in The Photosynthetic Bacterial Reaction Center, Structure and Dynamics (eds Breton, J. & Vermeglio, A.) 13–20 (Plenum, New York, 1988).

    Book  Google Scholar 

  43. Dracheva, S. M. et al. Eur J. Biochem. 171, 253–264 (1988).

    CAS  Article  Google Scholar 

  44. Carithers, R. P. & Parson, W. W. Biochim. biophys. Acta 387, 194–211 (1975).

    CAS  Article  Google Scholar 

  45. Shopes, R. J. & Wraight, C. A. Biochim. biophys. Acta 893, 409–425 (1987).

    CAS  Article  Google Scholar 

  46. Wasielewski, M. R. & Niemczyk, M. P. in Porphyrins: Excited States and Dynamics (eds Gouterman, M., Rentzepis, P. M. & Straub, K. D.) 154–165 (Am. Chem. Soc., Little Rock, Arkansas, 1985).

    Google Scholar 

  47. Wasielewski, M. R., Niemczyck, M. P., Johnson, D. G., Svec, W. A. & Minsek, D. W. Tetrahedron 45, 4785–4806 (1989).

    CAS  Article  Google Scholar 

  48. MacQueen, D. B. & Schanze, K. S. J. Am. chem. Soc. 113, 7470–7479 (1991).

    CAS  Article  Google Scholar 

  49. Antolovich, M. et al. J. phys. Chem. 95, 1933–1941 (1991).

    CAS  Article  Google Scholar 

  50. Perkins, T. A., Hauser, B. T., Eyler, J. R. & Schanze, K. S. J. phys. Chem. 94, 8745–8748 (1990).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moser, C., Keske, J., Warncke, K. et al. Nature of biological electron transfer. Nature 355, 796–802 (1992). https://doi.org/10.1038/355796a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355796a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing