Abstract
Powerful first-order analysis of intraprotein electron transfer is developed from electron-transfer measurements both in biological and in chemical systems. A variation of 20 Å in the distance between donors and acceptors in protein changes the electron-transfer rate by 1012-fold. Protein presents a uniform electronic barrier to electron tunnelling and a uniform nuclear characteristic frequency, properties similar to an organic glass. Selection of distance, free energy and reorganization energy are sufficient to define rate and directional specificity of biological electron transfer, meeting physiological requirements in diverse systems.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
The expanding network of mineral chemistry throughout earth history reveals global shifts in crustal chemistry during the Proterozoic
Scientific Reports Open Access 23 March 2022
-
Electron transfer-triggered imaging of EGFR signaling activity
Nature Communications Open Access 01 February 2022
-
Structural basis for safe and efficient energy conversion in a respiratory supercomplex
Nature Communications Open Access 27 January 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Chance, B. & Nishimura, M. Proc. natn. Acad. Sci. U.S.A. 46, 19–24 (1960).
Devault, D. & Chance, B. Biophys. J. 6, 825–847 (1966).
Mitchell, P. Nature 191, 144–148 (1961).
Devault, D. Q. Rev. Biophys. 13, 387–564 (1980).
Marcus, R. A. J. chem. Phys. 24, 966–978 (1956).
Marcus, R. A. & Sutin, N. Biochim. biophys. Acta 811, 265–322 (1985).
Levich, V. G., & Dogonadze, R. R. Dokl. Akad. Nauk USSR 124, 123–126 (1959).
Jortner, J. J. chem. Phys. 64, 4860–4867 (1976).
Hopfield, J. J. Proc. natn. Acad. Sci. U.S.A. 71, 3640–3644 (1974).
Michel, H., Deisenhofer, J. & Epp, O. EMBO J. 5, 2445–2451 (1986).
Allen, J. P., Feher, G., Yeates, T. O., Komiya, H. & Rees, D. C. Proc. natn Acad. Sci. U.S.A. 84, 5730–5734 (1987).
Chang, C. H. et al. FEBS Lett. 205, 82–86 (1986).
Gunner, M. R. & Dutton, P. L. J. Am. chem. Soc. 111, 3400–3412 (1989).
Therien, M. J. et al. in Electron Transfer in Inorganic, Organic and Biological Systems (eds Bolton, J., McLendon, G. L.&Mataga, N.) 191–199 (American Chemical Society, Washington DC 1991).
Cowan, J. A., Upmacis, R. K., Beratan, D. N., Onuchic, J. N. & Gray, H. B. Ann. N. Y. Acad. Sci. 550, 68–84 (1988).
Closs, G. L. & Miller, J. R. Science 240, 440–447 (1988).
Fox, L. S., Kozik, M., Winkler, J. R. & Gray, H. B. Science 247, 1069–1071 (1990).
Wasielewski, M. R., Niemczyk, M. P., Svec, W. A. & Pewitt, E. B. J. Am. chem. Soc. 107, 1080–1082 (1985).
Joran, A. D. et al. Nature 327, 508–511 (1987).
Franzen, S., Goldstein, R. F. & Boxer, S. G. J. phys. Chem. 94, 5135–5149 (1990).
Gaines, G. L., O'Neil, M. P., Svec, W. A., Niemczyk, M. P. & Wasielewski, M. R. J. Am. chem. Soc. 113, 719–721 (1991).
Wilier, J. R., Beitz, J. V. & Huddleston, R. K. J. Am. chem. Soc. 106, 5057–5068 (1984).
Meade, T. J., Gray, H. B. & Winkler, J. R. J. Am. chem. Soc. 111, 4353–4356 (1989).
Knapp, S. et al. J. Am. chem. Soc. 113, 4010–4013 (1991).
Parson, W. W., Clayton, R. K. & Codgell, R. J. Biochim. biophys. Acta 387, 265–277 (1975).
Schenck, C. C., Blankenship, R. E. & Parson, W. W. Biochim. biophys. Acta 680, 44–59 (1982).
Chidsey, C. E. D., Kirmaier, C., Holten, D. & Boxer, S. G. Biochim. biophys. Acta 766, 424–437 (1985).
Holten, D., Windsor, M. W., Parson, W. W. & Thornber, J. P. Biochim. biophys. Acta 501, 112–126 (1978).
Shopes, R. J. & Wraight, C. A. Biochim. biophys. Acta 806, 348–356 (1985).
Shuvalov, V. A. & Klevanik, A. V. FEBS Lett. 160, 51–55 (1983).
Holzapfel, W. et al. Proc. natn. Acad. Sci. U.S.A. 87, 5168–5172 (1990).
Michel-Beyerle, M. E. et al. Biochim. biophys. Acta 932, 52–70 (1988).
Parson, W. W., Chu, Z. T. & Warshel, A. Biochim biophys Acta 1017, 251–272 (1990).
Lockhart, D. J., Kirmaier, C., Holten, D. & Boxer, S. G. J. phys. Chem. 94, 6987–6995 (1990).
Holzapfel, W. et al. Chem. Phys. Lett. 160, 1–7 (1989).
Giangiacomo, K. M. & Dutton, P. L. Proc. natn. Acad. Sci. U.S.A. 86, 2658–2662 (1989).
Takahashi, E. & Wraight, C. A. FEBS Lett. 283, 140–144 (1991).
Shopes, R. J., Holten, D., Levine, L. & Wraight, C. A. Photosyn. Res. 12, 165–180 (1987).
Gamow, G. Z. Phys. 51, 204–212 (1928).
Beratan, D. N., Betts, J. N. & Onuchic, J. N. Science 252, 1285–1288 (1991).
McLendon, G. Accts chem. Res. 21, 160–167 (1988).
Tiede, D. M. et al. in The Photosynthetic Bacterial Reaction Center, Structure and Dynamics (eds Breton, J. & Vermeglio, A.) 13–20 (Plenum, New York, 1988).
Dracheva, S. M. et al. Eur J. Biochem. 171, 253–264 (1988).
Carithers, R. P. & Parson, W. W. Biochim. biophys. Acta 387, 194–211 (1975).
Shopes, R. J. & Wraight, C. A. Biochim. biophys. Acta 893, 409–425 (1987).
Wasielewski, M. R. & Niemczyk, M. P. in Porphyrins: Excited States and Dynamics (eds Gouterman, M., Rentzepis, P. M. & Straub, K. D.) 154–165 (Am. Chem. Soc., Little Rock, Arkansas, 1985).
Wasielewski, M. R., Niemczyck, M. P., Johnson, D. G., Svec, W. A. & Minsek, D. W. Tetrahedron 45, 4785–4806 (1989).
MacQueen, D. B. & Schanze, K. S. J. Am. chem. Soc. 113, 7470–7479 (1991).
Antolovich, M. et al. J. phys. Chem. 95, 1933–1941 (1991).
Perkins, T. A., Hauser, B. T., Eyler, J. R. & Schanze, K. S. J. phys. Chem. 94, 8745–8748 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Moser, C., Keske, J., Warncke, K. et al. Nature of biological electron transfer. Nature 355, 796–802 (1992). https://doi.org/10.1038/355796a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/355796a0
Further reading
-
Structural basis for safe and efficient energy conversion in a respiratory supercomplex
Nature Communications (2022)
-
The expanding network of mineral chemistry throughout earth history reveals global shifts in crustal chemistry during the Proterozoic
Scientific Reports (2022)
-
Electron transfer-triggered imaging of EGFR signaling activity
Nature Communications (2022)
-
Comparing ultrafast excited state quenching of flavin 1,N6-ethenoadenine dinucleotide and flavin adenine dinucleotide by optical spectroscopy and DFT calculations
Photochemical & Photobiological Sciences (2022)
-
Cryo-EM structures of engineered active bc1-cbb3 type CIII2CIV super-complexes and electronic communication between the complexes
Nature Communications (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.