Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional motion in the radio jet of the binary system R Aquarii

Abstract

R AQUARII is a symbiotic binary system surrounded by a complex extended optical nebulosity1. At radio and optical wavelengths a jet is seen to emerge from the central binary system2,3. We have observed R Aqr using the Very Large Array. Comparison with earlier radio observations shows that five out of six bright components in the radio jet have moved. One radio component has the same proper motion as the optical Mira, the primary star of the binary. At a distance of 200 pc (refs 1,4), the proper motions of the other components correspond to a tangential velocity of 44 to 160 km s-l with respect to the Mira. By combining these measurements with radial velocity determinations, we obtain a true three-dimensional velocity map of the radio jet, provided only that the observed proper motions indeed correspond to physical motions of emitting material. Our results rule out the possibility that the radio components in the jet were formed in a single explosive event, and suggest instead that they are 'bullets' ejected at 20-yr intervals into a narrow cone. Alternatively, if the components move along the jet and are accelerated during the whole of their passage through the inner 7 arcsec (1,400 AU) of the system, ejection at 40-yr intervals would lead to the disposition observed at present.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Solf, J. & Ulrich, H. Astr. Astrophys., 148, 274–288 (1985).

    ADS  CAS  Google Scholar 

  2. Sopka, R. J., Herbig, G., Kafatos, M. & Michalitsianos, A. G. Astrophys. J. 258, L35–39 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Spergel, D. N., Giuliani, J. L. Jr & Knapp, G. R. Astrophys. J. 275, 330–341 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Whitelock, P. A. Publs. astr. Soc. Pacif. 99, 573–591 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Gregory, P. C. & Seaquist, E. R. Nature 247, 532–534 (1974).

    Article  ADS  Google Scholar 

  6. Bowers, P. F. & Kundu, M. R. Astr. J. 84, 791–794 (1979).

    Article  ADS  Google Scholar 

  7. Ghigo, F. D. & Cohen, N. L. Astrophys. J. 245, 988–991 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Herbig, G. H. IAU Circ. No. 3535 (1980).

  9. Wallerstein, G. & Greenstein, J. L. Publs astr. Soc. Pacif. 92, 275–283 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Kafatos, M., Hollis, J. M. & Michalitsianos, A. G. Astrophys. J. 267, L103–107 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Hollis, J. M., Kafatos, M. & Michalitsianos, A. G. & McAlister, H. A. Astrophys. J. 289, 765–773 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Hollis, J. M., Michalitsianos, A. G., Kafatos, M., Wright, M. C. H. & Welch, W. J. Astrophys, J. 309, L53–57 (1986).

  13. Paresce, F., Burrows, C. & Horne, K. Astrophys. J. 329, 318–325 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Burgarella, D. & Paresce, F. Astrophys. J. 370, 590–596 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Lépine, J. R. D., LeSqueren, A. M. & Scalise, E. Jr Astrophys. J. 225, 869–879 (1978).

    Article  ADS  Google Scholar 

  16. Zuckerman, B. Astrophys. J. 230, 442–448 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Spencer, J. H. et al. Astr. J. 86, 392–409 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Mauron, N., Nieto, J. L., Picat, J. P., Lelièvre, G. & Sol, H. Astr. Astrophys., 142, L13–15 (1985).

    ADS  Google Scholar 

  19. Hollis, J. M., Oliversen, R. J., Kafatos, M., Michalitsianos, A. G. & Wagner, R. M. Astrophys. J. 377, 227–234 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Hollis, J. M. et al. Astrophys. J. 361, 663–666 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Smithsonian Astrophysical Observatory Star Catalogue (US Government Printing Offices, Washington DC, 1966).

  22. Kafatos, M., Michalitsianos, A. G. & Hollis, J. M. Astrophys. J. Suppl. 62, 853–874 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Willson, L. A., Garnavich, P. & Mattei, J. A. IAU Bull. Variable Stars. No. 1961 (1981).

  24. Paresce, F. et al Astrophys. J. 369, L67–70 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Zensus, A. in Variability in Blazars (Cambridge University Press, in the press).

  26. Morgan, B. Ann. Rev. Astr. Astrophys. 22, 507–537 (1984).

    Article  ADS  Google Scholar 

  27. Kafatos, M., Hollis, J. M., Yusef-Zadeh, F., Michalitsianos, A. G. & Elitzur, M. Astrophys. J. 346, 991–996 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lehto, H., Johnson, D. Three-dimensional motion in the radio jet of the binary system R Aquarii. Nature 355, 705–707 (1992). https://doi.org/10.1038/355705a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355705a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing