Abstract
The mechanism of DNA ejection, viral assembly and evolution are related to the structure of bacteriophage ΦX174. The F protein forms a T = 1 capsid whose major folding motif is the eight–stranded antiparallelβ barrel found in many other icosahedral viruses. Groups of 5 G proteins form 12 dominating spikes that enclose a hydrophilic channel containing some diffuse electron density. Each G protein is a tight β barrel with its strands running radially outwards and with a topology similar to that of the F protein. The 12 'pilot' H proteins per virion may be partially located in the putative ion channel. The small, basic J protein is associated with the DNA and is situated in an interior cleft of the F protein. Tentatively, there are three regions of partially ordered DNA structure, accounting for about 12% of the total genome.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Hayashi, M., Aoyama, A., Richardson, D. L. Jr & Hayashi, M. N. in The Bactehophages (The Viruses) Vol. 2 (ed. Calendar, R.) 1–71 (Plenum, New York, 1988).
- 2
Burgess, A. B. Proc. natn. Acad. Sci. U.S.A. 64, 613–617 (1969).
- 3
Edgell, M. H., Hutchison, C. A. III & Sinsheimer, R. L. J. molec. Biol. 42, 547–557 (1969).
- 4
Siden, E. J. & Hayashi, M. J. molec. Biol. 89, 1–16 (1974).
- 5
Hall, C. E., Maclean, E. C. & Tessman, I. J. molec. Biol 1, 192–194 (1959).
- 6
Thomas, W. J. & Horne, R. W. Virology 15, 1–7 (1961).
- 7
Stouthamer, A. H., Daems, W. T. & Eigner, J. Virology 20, 246–250 (1963).
- 8
Brown, D. T., Mackenzie, J. M. & Bayer, M. E. J. Virol. 7, 836–846 (1971).
- 9
Incardona, N. L. & Selvidge, L. J. Virol. 11, 775–782 (1973).
- 10
Jazwinski, S. M., Lindberg, A. A. & Kornberg, A. Virology 66, 268–282 (1975).
- 11
Feige, U. & Stirm, S. Biochem. biophys. Res. Commun. 71, 566–573 (1976).
- 12
Sinsheimer, R. L. Prog. Nucleic Acid Res. molec. Biol. 8, 115–169 (1968).
- 13
Newbold, J. E. & Sinsheimer, R. L. J. Virol. 5, 427–431 (1970).
- 14
Weisbeek, P. J., Van de Pol, J. H. & Van Arkel, G. A. Virology 52, 408–416 (1973).
- 15
Dowell, C. E., Jansz, H. S. & Zandberg, J. Virology 114, 252–255 (1981).
- 16
Newbold, J. E. & Sinsheimer, R. L. J. molec. Biol. 49, 49–66 (1970).
- 17
Incardona, N. L. & Müller, U. R. J. molec. Biol. 181, 479–486 (1985).
- 18
Doniger, J. & Tessman, I. Virology 39, 389–394 (1969).
- 19
Incardona, N. L. J. Virol. 14, 469–478 (1974).
- 20
Yazaki, K. J. virol. Meth. 2, 159–167 (1981).
- 21
Mano, Y., Kawabe, T., Komano, T. & Yazaki, K. Agric. Biol. Chem. 46, 2041–2049 (1982).
- 22
Fujisawa, H. & Hayashi, M. J. Virol. 23, 439–442 (1977).
- 23
Aoyama, A., Hamatake, R. K. & Hayashi, M. Proc. natn. Acad. Sci. U.S.A. 78, 7285–7289 (1981).
- 24
Mukai, R., Hamatake, R. K. & Hayashi, M. Proc. natn. Acad. Sci. U.S.A. 76, 4877–4881 (1979).
- 25
Liljas, L. Prog. Biophys. molec. Biol. 48, 1–36 (1986).
- 26
Sanger, F. et al. Nature 265, 687–695 (1977).
- 27
Shaw, D. C. et al. Nature 272, 510–515 (1978).
- 28
Godson, G. N. in The Single-Stranded DNA Phages (eds Denhardt, D. T., Dressler, D. & Ray, D. S.) 103–112 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1978).
- 29
Godson, G. N., Fiddes, J. C., Barrell, B. G. & Sanger, F. in The Single-Stranded DNA Phages (eds Denhardt, D. T., Dressier, D. & Ray, D. S.) 51–86 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1978)
- 30
Lau, P. C. K. & Spencer, J. H. Gene 40, 273–284 (1985).
- 31
Huber, R. & Bennett, W. S. Jr Biopolymers 22, 261–279 (1983).
- 32
Sinsheimer, R. L. J. molec. Biol. 1, 37–42 (1959).
- 33
Willingmann, P. et al. J. molec. Biol. 212, 345–350 (1990).
- 34
Eigner, J., Stouthamer, A. H., van der Sluys, I. & Cohen, J. A. J. molec. Biol 6, 61–84 (1963).
- 35
Weisbeek, P. J., Van de Pol, J. H. & Van Arkel, G. A. Virology 48, 456–462 (1972).
- 36
Sanger, F. et al. J. molec. Biol. 125, 225–246 (1978).
- 37
Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).
- 38
Caspar, D. L. D. & Klug, A. Cold Spring Harb. Symp. quant. Biol. 27, 1–24 (1962).
- 39
Rossmann, M. G. & Johnson, J. E. A. Rev. Biochem. 58, 533–573 (1989).
- 40
Rossmann, M. G. et al. Nature 317, 145–153 (1985).
- 41
Tsao, J. et al. Science 251, 1456–1464 (1991).
- 42
Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. Nature 276, 368–373 (1978).
- 43
Abad-Zapatero, C. et al. Nature 286, 33–39 (1980).
- 44
Liljas, L. et al. J. molec. Biol. 159, 93–108 (1982).
- 45
Cohen, S. S. & McCormick, F. P. Adv. Virus Res. 24, 331–387 (1979).
- 46
Benevides, J. M., Stow, P. L., Ilag, L. L., Incardona, N. L. & Thomas, G. J. Jr Biochemistry 30, 4855–4863 (1991).
- 47
Jazwinski, S. M., Marco, R. & Kornberg, A. Virology 66, 294–305 (1975).
- 48
Chen, Z. et al. Science 245, 154–159 (1989).
- 49
Saenger, W. in Principles of Nucleic Acid Structure (ed. Cantor, C. R.) 51–104 (Springer, New York, 1984).
- 50
Chapman, M. S., Minor, J., Rossmann, M. G., Diana, G. D. & Andries, K. J. molec. Biol. 217, 455–463 (1991).
- 51
Argos, P. et al. Biochemistry 18, 5698–5703 (1979).
- 52
Rossmann, M. G., Moras, D. & Olsen, K. W. Nature 250, 194–199 (1974).
- 53
Matthews, B. W. & Rossmann, M. G. Meth. Enzym. 115, 397–420 (1985).
- 54
Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. Nature 276, 362–368 (1978).
- 55
Namba, K. & Stubbs, G. Science 231, 1401–1406 (1986).
- 56
Valegård, K., Liljas, L., Fridborg, K. & Unge, T. Nature 345, 36–41 (1990).
- 57
Choi, H. K. et al. Nature 354, 37–43 (1991).
- 58
Ladenstein, R. et al. J. molec. Biol. 203, 1045–1070 (1988).
- 59
Smith, T. J. et al. Science 233, 1286–1293 (1986).
- 60
Rossmann, M. G. Proc. natn. Acad. Sci. U.S.A. 85, 4625–4627 (1988).
- 61
Rossmann, M. G. & Blow, D. M. Acta crystallogr. 15, 24–31 (1962).
- 62
Tong, L. & Rossmann, M. G. Acta crystallogr. A46, 783–792 (1990).
- 63
Stauffacher, C. V. et al. in Crystallography in Molecular Biology (eds Moras, D., Drenth, J., Strandberg, B., Suck, D. & Wilson, K.) 293–308 (Plenum, New York, 1987).
- 64
Rossmann, M. G. Acta crystallogr. A46, 73–82 (1990).
- 65
Rossmann, M. G. et al. J. appl. Crystallogr. (in the press).
- 66
Smith, T. J. J. appl. Crystallogr. 23, 141–142 (1990).
- 67
Gibson, T. J. & Argos, P. J. molec. Biol. 212, 7–9 (1990).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
McKenna, R., Xia, D., Willingmann, P. et al. Atomic structure of single-stranded DNA bacteriophage ΦX174 and its functional implications. Nature 355, 137–143 (1992). https://doi.org/10.1038/355137a0
Received:
Accepted:
Issue Date:
Further reading
-
Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces
Scientific Reports (2020)
-
Virus Isoelectric Point Estimation: Theories and Methods
Applied and Environmental Microbiology (2020)
-
Simultaneous disinfection of E. faecalis and degradation of carbamazepine by sulfate radicals: An experimental and modelling study
Environmental Pollution (2020)
-
Genome Modularization Reveals Overlapped Gene Topology Is Necessary for Efficient Viral Reproduction
ACS Synthetic Biology (2020)
-
Mechanistic insights into viral clearance during the chromatography steps in antibody processes by using virus surrogates
Biotechnology Progress (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.