Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1

Abstract

THERE is evidence to suggest that components of archaebacteria are evolutionarily related to cognates in the eukaryotic cytosol–7. We postulated that the major heat-shock protein of the thermophilic archaebacterium, Sulfolobus shibatae, is a molecular chaperone and that it is related to an as-yet unidentified chaperone component in the eukaryotic cytosol. Acquired thermotolerance in S. shibatae correlates with the predominant synthesis of this already abundant protein, referred to as thermophilic factor 55 (TF55; ref. 8). TF55 is a homo-oligomeric complex of two stacked 9-membered rings, closely resembling the 7-membered-ring complexes of the chaperonins, groEL, hsp60 and Rubisco-binding protein9–15. The TF55 complex binds unfolded polypeptides in vitro and has ATPase activity—features consistent with its being a molecular chaperone16,17. The primary structure of TF55, however, is not significantly related to the chaperonins. On the other hand, it is highly homologous (36–40% identity) to a ubiquitous eukaryotic protein, t-complex polypeptide-1 (TCP1; refs 18–20). In Saccharomyces cerevisiae, TCP1 is an essential protein that may play a part in mitotic spindle formation21. We suggest that TF55 in archaebacteria and TCP1 in the eukaryotic cytosol are members of a new class of molecular chaperones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cavalier-Smith, T. Ann. N. Y. Acad. Sci. 503, 17–54 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Lechner, K. & Böck, A. Molec. gen. Genet. 208, 523–528 (1987).

    Article  CAS  Google Scholar 

  3. Zillig, W. Ann. N. Y. Acad. Sci. 503, 78–82 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Dahlmann, B. et al. FEBS Lett. 251, 125–131 (1989).

    Article  CAS  Google Scholar 

  5. Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. Proc. natn. Acad. Sci. U.S.A. 86, 9355–9359 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Zillig, W. et al. Endocytobiol. Cell Res. 6, 1–25 (1989).

    Google Scholar 

  7. Auer, J., Lechner, K. & Böck, A. Can. J. Microbiol. 35, 200–204 (1989).

    Article  CAS  Google Scholar 

  8. Trent, J. D., Osipiuk, J. & Pinkau, T. J. Bact. 172, 1478–1484 (1990).

    Article  CAS  Google Scholar 

  9. Hendrix, R. W. J. molec. Biol. 129, 359–373 (1979).

    Article  Google Scholar 

  10. McMullen, T. W. & Hallberg, R. L. Molec. Cell. Biol. 8, 371–380 (1988).

    Article  Google Scholar 

  11. Pushkin, A. V. et al. Biochim. biophys. Acta 704, 379–384 (1982).

    Article  CAS  Google Scholar 

  12. Hemmingsen, S. M. et al. Nature 333, 330–334 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Nature 342, 884–889 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Cheng, M. Y. et al. Nature 337, 620–625 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Carazo, J. M. et al. J. struct. Biol. 106, 211–220 (1991).

    Article  CAS  Google Scholar 

  16. Rothman, J. E. Cell 59, 591–601 (1989).

    CAS  Google Scholar 

  17. Ellis, R. J. & van der Vies, S. M. A. Rev. Biochem. 60, 327–347 (1991).

    Article  Google Scholar 

  18. Silver, L. M., Artzt, K. & Bennett, D. Cell 17, 275–284 (1979).

    Article  CAS  Google Scholar 

  19. Silver, L. M., Kleene, K. C., Distel, R. J. & Hecht, N. B. Devl Biol. 119, 605–608 (1987).

    Article  CAS  Google Scholar 

  20. Willison, K. R., Dudley, D. & Potter, J. Cell 44, 727–738 (1986).

    Article  CAS  Google Scholar 

  21. Ursic, D. & Culbertson, M. R. Molec. Cell. Biol. 11, 2629–2640 (1991).

    Article  CAS  Google Scholar 

  22. Barraclough, R. & Ellis, R. J. Biochem. biophys. Acta 608, 19–31 (1980).

    CAS  PubMed  Google Scholar 

  23. Musgrove, J. E., Johnson, R. A. & Ellis, R. J. Eur. J. Biochem. 163, 529–534 (1987).

    Article  CAS  Google Scholar 

  24. Ostermann, J., Horwich, A. L., Neupert, W. & Hartl, F.-U. Nature 341, 125–130 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Martin, J. et al. Nature 352, 36–42 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Phipps, B. M., Hoffmann, A., Stetter, K. O. & Baumeister, W. EMBO J. 10, 1711–1722 (1991).

    Article  CAS  Google Scholar 

  27. Pfanner, N., Tropschug, M. & Neupert, W. Cell 49, 815–823 (1987).

    Article  CAS  Google Scholar 

  28. Pelham, H. R. B. EMBO J. 8, 3171–3176 (1989).

    Article  CAS  Google Scholar 

  29. Hendrix, R. W. J. molec. Biol. 129, 375–392 (1979).

    Article  CAS  Google Scholar 

  30. Willison, K. et al. EMBO J. 6, 1967–1974 (1987).

    Article  CAS  Google Scholar 

  31. Ursic, D. & Ganetzky B. Gene 68, 267–274 (1988).

    Article  CAS  Google Scholar 

  32. Willison, K. et al. Cell 57, 621–632 (1989).

    Article  CAS  Google Scholar 

  33. Ahmad, S. & Gupta, R. S. Biochim. biophys. Acta 1087, 253–255 (1990).

    Article  CAS  Google Scholar 

  34. Ellis, J. R. Science 250, 954–959 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Chandrasekhar, G. N., Tilly, K., Woolford, C., Hendrix, R. & Georgopoulos, C. J. biol. Chem. 261, 12414–12419 (1986).

    CAS  Google Scholar 

  36. Searcy, D. G. & Hixon, W. G. BioSystems 25, 1–11 (1991).

    Article  CAS  Google Scholar 

  37. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequencing and Structure, Vol 5, suppl. 3 (ed. Dayhoff, M. O.), 345–362 (Natn. Biomed. Res. Fdn, Washington, DC, 1979).

    Google Scholar 

  38. Shinnick, T. J. Bact. 169, 1080–1088 (1987).

    Article  CAS  Google Scholar 

  39. Viitanen, P. V. et al. Biochemistry 29, 5665–5671 (1990).

    Article  CAS  Google Scholar 

  40. Wall, J. S. & Hainfeld J. F. A. Rev. Biophys. biophys. Chem. 15, 355–376 (1986).

    Article  CAS  Google Scholar 

  41. Horwich, A., Koop, A. H. & Eckhart, W. J. Virol. 36, 125–132 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lill, R., Dowhan, W. & Wickner, W. Cell 60, 271–280 (1990).

    Article  CAS  Google Scholar 

  43. Reiter, W.-D., Hüdepohl, U. & Zillig, W. Proc. natn. Acad. Sci. U.S.A. 87, 9509–9513 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trent, J., Nimmesgern, E., Wall, J. et al. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354, 490–493 (1991). https://doi.org/10.1038/354490a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354490a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing