Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel

Abstract

SKELETAL muscle is unusual in that 70–85% of resting membrane conductance is carried by chloride ions1. This conductance is essential for membrane-potential stability, as its block by 9-anthracene-carboxylic acid and other drugs causes myotonia2,3. Fish electric organs are developmentally derived from skeletal muscle, suggesting that mammalian muscle may express a homologue of the Torpedo mamorataelectroplax chloride channel4,5. We have now cloned the complementary DNA encoding a rat skeletal muscle chloride channel by homology screening to the Cl channel from Torpedo4 (Fig. la). It encodes a 994-amino-acid protein which is about 54% identical to the Torpedo channel and is predominantly expressed in skeletal muscle. Messenger RNA amounts in that tissue increase steeply in the first 3–4 weeks after birth, in parallel with the increase in muscle Cl conductance6. Expression from cRNA in Xenopus oocytes leads to 9-anthracene-carboxylic acid-sensitive currents with time and voltage dependence typical for macroscopic muscle Cl conductance. This and the functional destruction of this channel in mouse myotonia7suggests that we have cloned the major skeletal muscle chloride channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bretag, A. H. Physiol. Rev. 67, 618–724 (1987).

    Article  CAS  Google Scholar 

  2. Rüdel, R. & Lehmann-Horn, F. Physiol. Rev. 65, 310–356 (1985).

    Article  Google Scholar 

  3. Bryant, S. H. & Morales-Aguilera, A. J. Physiol., Lond. 219, 367–383 (1971).

    Article  CAS  Google Scholar 

  4. Jentsch, T. J., Steinmeyer, K. & Schwarz, G. Nature 348, 510–514 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Miller, C. & Richard, E. A. in Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells (eds Alvarez-Leefsmans, F. J. & Russel, J. M.) 383–405 (Plenum, New York, 1990).

    Book  Google Scholar 

  6. Conte Camerino, D., De Luca, A., Mambrini, M. & Vrbovà, G. Pflügers Arch. 413, 568–570 (1989).

    Article  CAS  Google Scholar 

  7. Steinmeyer, K. et al. Nature 354, 304–308 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  9. Kimes, B. W. & Brandt, B. L. Expl Cell Res. 98, 349–366 (1976).

    Article  CAS  Google Scholar 

  10. Cooperman, S. S. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8721–8725 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Trimmer, J. S. et al. Neuron 3, 33–49 (1989).

    Article  CAS  Google Scholar 

  12. Trimmer, J. S., Cooperman, S. S., Agnew, W. S. & Mandel, G. Devl Biol. 142, 360–367 (1990).

    Article  CAS  Google Scholar 

  13. Kallen, R. L. et al. Neuron 4, 233–242 (1990).

    Article  CAS  Google Scholar 

  14. Mishina, M. et al. Nature 321, 406–411 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Witzemann, V., Barg, B., Criado, M., Stein, E. & Sakmann, B. FEBS Lett. 242, 419–424 (1989).

    Article  CAS  Google Scholar 

  16. Palade, P. T. & Barchi, R. L. J. gen. Physiol. 69, 325–342 (1977).

    Article  CAS  Google Scholar 

  17. Miller, C. Phil. Trans. R. Soc. B 299, 401–411 (1982).

    Article  CAS  Google Scholar 

  18. Miller, C. & White, M. M. Proc. natn. Acad. Sci. U.S.A. 81, 2772–2775 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Bauer, C. K., Steinmeyer, K., Schwarz, J. R. & Jentsch, T. J. Proc. natn. Acad. Sci. U.S.A. (in the press).

  20. Blatz, A. L. & Magleby, K. L. Biophys. J. 43, 237–241 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Blatz, A. L. & Magleby, K. L. Biophys. J. 47, 119–123 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Kozak, M. Nucleic Acids Res. 12, 857–872 (1984).

    Article  CAS  Google Scholar 

  23. Colman, A. in Transcription and Translation (eds Hames, B. D. & Higgins, S. J.) 271–302 (IRL, Oxford, 1984).

    Google Scholar 

  24. Higuchi, R. in PCR Technology (ed. Erlich, H. A.) 61–70 (Stockton, New York, 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmeyer, K., Ortland, C. & Jentsch, T. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 354, 301–304 (1991). https://doi.org/10.1038/354301a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354301a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing