Letter | Published:

Cooperative interaction of an initiator-binding transcription initiation factor and the helix–loop–helix activator USF

Nature volume 354, pages 245248 (21 November 1991) | Download Citation

Subjects

Abstract

TRANSCRIPTION initiation by mammalian RNA polymerase II is effected by multiple common factors1,2 interacting through minimal promoter elements and regulated by gene-specific factors3 interacting with distal control elements. Minimal promoter elements that can function independently or together, depending on the specific promoter, include the upstream TATA box4,5 and a pyrimidine-rich initiator6–8 (Inr) overlapping the transcription start site. The binding of TFIID to the TATA element4,9 promotes the assembly of other factors into a preinitiation complex10–12 but factors which function at the Inr have not been defined. We show here that a novel factor (TFII-I) binds specifically to Inr elements, supports basal transcription from the adenovirus major late promoter and is immunologically related to the helix-loop-helix activator USF (ref. 13). We further show that TFII-I also binds to the upstream high-affinity USF site (E box), that USF also binds to the Inr, and that TFII-I and USF interact cooperatively at both Inr and E box sites. Thus, TFII-I represents a novel type of transcription initiation factor whose interactions at multiple promoter elements may aid novel communication mechanisms between upstream regulatory factors and the general transcriptional machinery.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & J. biol. Chem. 255, 11992–11996 (1980).

  2. 2.

    , , , & Proc. natn. Acad. Sci. U.S.A. 87, 9158–9162 (1990).

  3. 3.

    , & Science 236, 1237–1245 (1987).

  4. 4.

    , & Molec. cell. Biol. 8, 4028–4040 (1988).

  5. 5.

    & A. Rev. Biochem. 50, 349–383 (1981).

  6. 6.

    & Proc. natn. Acad. Sci. U.S.A. 77, 1432–1436 (1980).

  7. 7.

    & Cell 57, 103–113 (1989).

  8. 8.

    , , & Proc. natn. Acad Sci. U.S.A 87, 4509–4513 (1990).

  9. 9.

    & Cell 43, 165–175 (1985).

  10. 10.

    , & Science 241, 1335–1338 (1988).

  11. 11.

    , , & Cell 56, 549–561 (1989).

  12. 12.

    , , , & Molec. cell. Biol. 10, 6335–6347 (1990).

  13. 13.

    , & Genes Dev. 4, 1730–1740 (1990).

  14. 14.

    , & Cell 43, 439–448 (1985).

  15. 15.

    , , & EMBO J. 4, 3563–3570 (1985).

  16. 16.

    , , & Cell 66, 1–20 (1991).

  17. 17.

    & Science 251, 1149–1280 (1991).

  18. 18.

    , & Cell 65, 395–407 (1991).

  19. 19.

    , & Cell 56, 777–783 (1989).

  20. 20.

    et al. Cell 58, 537–544 (1989).

  21. 21.

    , , & Cell 60, 733–746 (1990).

  22. 22.

    et al. Nature 348, 86–88 (1990).

  23. 23.

    & Molec. cell. Biol. 11, 5125–5136 (1991).

  24. 24.

    et al. Nature 346, 387–390 (1990).

Download references

Author information

Affiliations

  1. Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA

    • Ananda L. Roy
    • , Michael Meisterernst
    • , Philippe Pognonec
    •  & Robert G. Roeder

Authors

  1. Search for Ananda L. Roy in:

  2. Search for Michael Meisterernst in:

  3. Search for Philippe Pognonec in:

  4. Search for Robert G. Roeder in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/354245a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.