Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of defects on molecular mobility in liquid water

Abstract

LIQUID water is a totally connected random network of hydrogen bonds, the connectivity lying well above the percolation threshold1–3 But despite this extensive association of hydrogen bonds with strengths greater than the thermal energy, the diffusion and rotation rates of water molecules at ambient temperatures are comparable to those of non-associated simple liquids. Many experiments have indicated that the random tetrahedral network cannot be perfect but must contain defects, which are characterized geometrically by the presence of an extra (fifth) molecule in the first coordination shell, or topologically by the presence of 'bifurcated' hydrogen bonds4–7. Here we use molecular-dynamics simulations to examine the effect of such defects on molecular mobility in water. We find that they provide pathways of lower energy between different tetrahedral local arrangements, thus acting as 'catalysts'. The anomalous mobility of water under compression8,9 and the decreased mobility in hydrophobic hydration shells10,11 can be interpreted on the same basis. We suggest that our results are relevant to studies on 'stretched' water12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Angell, C. A. Ann. Rev. Phys. Chem. 34, 593–611 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Dore, J. & Teixeira, J. (eds) Hydrogen Bonded Liquids (Kluwer, Dordrecht. 1991).

  3. Stillinger, F. H. Science 209, 451–457 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Grünwald, E. J. Am. chem. Soc. 108, 5719–5726 (1986).

    Article  Google Scholar 

  5. Narten, A. H. & Levy, H. A. Science 165, 447–454 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Giguère, P. A. J. chem. Phys. 87, 4835–4839 (1987).

    Article  ADS  Google Scholar 

  7. Walrafen, G. E., Hokmabadi, M. S., Yang, W.-H., Chu, Y. C. & Monosmith, B. J. phys. Chem. 93, 2909–2917 (1989).

    Article  CAS  Google Scholar 

  8. Lang, E. W. & Lüdemann, H. D. in High Pressure NMR (ed. Jonas, J.) (Springer, Berlin, 1991).

    Google Scholar 

  9. Pottel, R., Asselborn, E., Eck, R. & Tresp, V. Ber. Buns. phys. Chem. 93, 676–688 (1989).

    Article  CAS  Google Scholar 

  10. Geiger, A., Rahman, A. & Stillinger, F. H. J. chem. Phys. 70, 273–276 (1979).

    ADS  Google Scholar 

  11. Huot, J.-Y. & Jolicoeur, C. in The Chemical Physics of Solvation (eds Dogonadze, R. R., Kalman, E., Kornyshew, A. A. & Ulstrup, J.) (Elsevier, Amsterdam, 1985).

    Google Scholar 

  12. Angell, C. A. Nature 331, 206–211 (1988).

    Article  ADS  Google Scholar 

  13. Green, J. L., Durben, D. J., Wolf, G. H. & Angell, C. A. Science 249, 649–652 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Geiger, A., Mausbach, P. & Schnitker, J. in Water and Aqueous Solutions (eds Neilson, G. W. & Enderby, J. E.) (Hilger, Bristol, 1986).

    MATH  Google Scholar 

  15. Stillinger, F. H. & Weber, T. A. J. phys. Chem. 87, 2833–2840 (1983).

    Article  CAS  Google Scholar 

  16. Weber, T. A. & Stillinger, F. H. J. chem. Phys. 87, 3252–3253 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Falk, M. & Knop, O. in Water: A Comprehensive Treatise (ed. Franks, F.) (Plenum, New York, 1972).

    Google Scholar 

  18. Newton, M. D. J. phys. Chem. 87, 4288–4292 (1983).

    Article  CAS  Google Scholar 

  19. Newton, M. D., Jeffrey, G. A. & Takagi, S. J. Am. chem. Soc. 101, 1997–2010 (1979).

    Article  CAS  Google Scholar 

  20. Bosio, L., Chen, S. H. & Teixeira, J. Phys. Rev. A27, 1468 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Sciortino, F., Geiger, A. & Stanley, H. E. Phys. Rev. Lett. 65, 3452–3455 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Cohen, M. H. & Turnbull, D. J. chem. Phys. 31, 1164 (1959).

    Article  ADS  CAS  Google Scholar 

  23. Stillinger, F. H. & Rahman, A. J. chem. Phys. 60, 1545–1557 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Berendsen, H. J. C., Postma, J. P. M., von Gunsteren, W. F. & Hermans, J. in Intermolecular Forces (ed. Pullman, B.) 331 (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  25. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. J. chem. Phys. 79, 926 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciortino, F., Geiger, A. & Stanley, H. Effect of defects on molecular mobility in liquid water. Nature 354, 218–221 (1991). https://doi.org/10.1038/354218a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354218a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing