Letter | Published:

Base-pairing shift in the major groove of (CA)n tracts by B-DNA crystal structures

Nature volume 354, pages 167170 (14 November 1991) | Download Citation

Subjects

Abstract

THE crystal packing of the B-DNA dodecamer d(ACCG-GCGCCACA)- d(TGTGGCGCCGGT) is characterized by the reciprocal fit of double helices with specific base-backbone interactions in the major groove. Cooling the crystals below -10°C stabilizes a new conformational state with a long-range sequence-dependent one-step shift in the major-groove base pairing. The tilt of the bases leads to the disruption of the Watson–Crick pairing in the major groove and to the formation of interactions with the 5' neighbour of their complement. This alteration propagates along the helical axis over more than half a turn. As a result, the molecular structure is normal when seen from the minor groove side and mismatched in the major groove. Comparison with a parent isomorphous dodecamer structure corresponding to the codon 10–13 of the c-Ha-ras proto-oncogene shows that this new structural feature is sequence dependent and clearly favoured by (CA)n tracts. As (CA)n tracts of DNA are involved both in recombination and in transcription, this new recognition pattern should be considered in the analysis of the various processes involving the reading of the genetic information.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Nature 294, 657–659 (1981).

  2. 2.

    , , & Nature 341, 459–462 (1989).

  3. 3.

    , , & Nature 300, 149–152 (1982).

  4. 4.

    , , & Nature 320, 552–555 (1986).

  5. 5.

    , & Nucleic Acids Res. 15, 6589–6606 (1987).

  6. 6.

    J. biomolec. Struct. Dyn. 3, 205–226 (1985).

  7. 7.

    et al. Proc. natn. Acad. Sci. U.S.A. 87, 6693–6697 (1990).

  8. 8.

    et al. Science 238, 498–504 (1987).

  9. 9.

    , , & Proc. natn. Acad. Sci. U.S.A. 84, 8385–8389 (1987).

  10. 10.

    , , & Nature 330, 221–226 (1987).

  11. 11.

    , & J. biomolec. Struct. Dyn. 1, 509–521 (1983).

  12. 12.

    , & Proc. natn. Acad. Sci. U.S.A. 81, 3665–3669 (1984).

  13. 13.

    & J. biol. Chem. 264, 20736–20743 (1989).

  14. 14.

    , , & J. biomolec. Struct. Dyn. 8, 529–538 (1990).

  15. 15.

    , , & Proc. natn. Acad. Sci. U.S.A. 88, 2312–2316 (1991).

  16. 16.

    , & Biochemistry 28, 2360–2364 (1989).

  17. 17.

    , & J. molec. Biol. 217, 177–199 (1991).

  18. 18.

    Nature 305, 101–102 (1983).

  19. 19.

    & Molec. cell. Biol. 8, 3122–3128 (1988).

  20. 20.

    & Molec. cell. Biol. 6, 3934–3947 (1986).

  21. 21.

    , & Cell 26, 191–203 (1981).

  22. 22.

    Nature 302, 575–581 (1983).

  23. 23.

    & Trends Genet. 5, 367–371 (1989).

  24. 24.

    et al. Cold Spring Harb. Symp. quant. Biol. 31, 77–84 (1966).

  25. 25.

    & J. biol. Chem. 263, 14784–14789 (1988).

  26. 26.

    , , & Acta crystallogr. A33, 800–804 (1977).

  27. 27.

    , & J. mol. Biol. 184, 119–145 (1985).

Download references

Author information

Affiliations

  1. Laboratoire de Cristallographie Biologique, Institut de Biologie Molécuiaire et Cellulaire, 15 rue Descartes, 6700 Strasbourg, France

    • Youri Timsit
    • , Eric Vilbois
    •  & Dino Moras

Authors

  1. Search for Youri Timsit in:

  2. Search for Eric Vilbois in:

  3. Search for Dino Moras in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/354167a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.