Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Base-pairing shift in the major groove of (CA)n tracts by B-DNA crystal structures

Abstract

THE crystal packing of the B-DNA dodecamer d(ACCG-GCGCCACA)- d(TGTGGCGCCGGT) is characterized by the reciprocal fit of double helices with specific base-backbone interactions in the major groove. Cooling the crystals below -10°C stabilizes a new conformational state with a long-range sequence-dependent one-step shift in the major-groove base pairing. The tilt of the bases leads to the disruption of the Watson–Crick pairing in the major groove and to the formation of interactions with the 5' neighbour of their complement. This alteration propagates along the helical axis over more than half a turn. As a result, the molecular structure is normal when seen from the minor groove side and mismatched in the major groove. Comparison with a parent isomorphous dodecamer structure corresponding to the codon 10–13 of the c-Ha-ras proto-oncogene shows that this new structural feature is sequence dependent and clearly favoured by (CA)n tracts. As (CA)n tracts of DNA are involved both in recombination and in transcription, this new recognition pattern should be considered in the analysis of the various processes involving the reading of the genetic information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fuchs, R. P. P., Schwartz, N. & Daune, M. Nature 294, 657–659 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Timsit, Y., Westhof, E., Fuchs, R. P. P. & Moras, D. Nature 341, 459–462 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Hunter, W., Brown, T., Anand, N. N. & Kennard, O. Nature 320, 552–555 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Hunter, W., Brown, T. & Kennard, O. Nucleic Acids Res. 15, 6589–6606 (1987).

    Article  CAS  Google Scholar 

  6. Kennard, O. J. biomolec. Struct. Dyn. 3, 205–226 (1985).

    Article  CAS  Google Scholar 

  7. Webster, G. et al. Proc. natn. Acad. Sci. U.S.A. 87, 6693–6697 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Privé, G. et al. Science 238, 498–504 (1987).

    Article  ADS  Google Scholar 

  9. Coll, M., Frederick, C. A., Wang, A. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 84, 8385–8389 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Nelson, H., Finch, J., Luisi, B. & Klug, A. Nature 330, 221–226 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Lu, P., Cheung, S. & Arndt, K. J. biomolec. Struct. Dyn. 1, 509–521 (1983).

    Article  CAS  Google Scholar 

  12. Cheung, S., Arndt, K. & Lu, P. Proc. natn. Acad. Sci. U.S.A. 81, 3665–3669 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Usdin, K. & Furano, A. J. biol. Chem. 264, 20736–20743 (1989).

    CAS  PubMed  Google Scholar 

  14. McNamara, P., Bolshoy, A., Trifonov, E. & Harrington, R. J. biomolec. Struct. Dyn. 8, 529–538 (1990).

    Article  CAS  Google Scholar 

  15. Bolshoy, A., McNamara, P., Harrington, R. & Trifonov, E. Proc. natn. Acad. Sci. U.S.A. 88, 2312–2316 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Jain, S., Zon, G. & Sundaralingam, M. Biochemistry 28, 2360–2364 (1989).

    Article  CAS  Google Scholar 

  17. Privé, G., Yanagi, K. & Dickerson, R. J. molec. Biol. 217, 177–199 (1991).

    Article  Google Scholar 

  18. Rodgers, J. Nature 305, 101–102 (1983).

    Article  ADS  Google Scholar 

  19. Cowie, A. & Myers, R. Molec. cell. Biol. 8, 3122–3128 (1988).

    Article  CAS  Google Scholar 

  20. Treco, D. & Arnheim, N. Molec. cell. Biol. 6, 3934–3947 (1986).

    Article  CAS  Google Scholar 

  21. Shen, S., Slightom, J. & Smithies, O. Cell 26, 191–203 (1981).

    Article  CAS  Google Scholar 

  22. Tonegawa, S. Nature 302, 575–581 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Jarman, A. & Wells, R. Trends Genet. 5, 367–371 (1989).

    Article  CAS  Google Scholar 

  24. Streisinger, G. et al. Cold Spring Harb. Symp. quant. Biol. 31, 77–84 (1966).

    Article  CAS  Google Scholar 

  25. Kunkel, T. & Soni, A. J. biol. Chem. 263, 14784–14789 (1988).

    CAS  PubMed  Google Scholar 

  26. Sussman, J. L., Holdbroock, S. R., Church, G. M. & Kim, S.-H. Acta crystallogr. A33, 800–804 (1977).

    Article  Google Scholar 

  27. Westhof, E., Dumas, P. & Moras, D. J. mol. Biol. 184, 119–145 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timsit, Y., Vilbois, E. & Moras, D. Base-pairing shift in the major groove of (CA)n tracts by B-DNA crystal structures. Nature 354, 167–170 (1991). https://doi.org/10.1038/354167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing