Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neural organization for the long-term memory of paired associates

Abstract

MOST of our long-term memories of episodes or objects are organized so that we can retrieve them by association. Clinical neuropsychologists assess human memory by the paired-associate learning test, in which a series of paired words or figures is presented and the subject is then asked to retrieve the other pair member associated with each cue1. Patients with lesions of the temporal lobe show marked impairment in this test2–6. In our study, we trained monkeys in a pair-association task7 using a set of computer-generated paired patterns. We found two types of task-related neurons in the anterior temporal cortex. One type selectively responded to both pictures of the paired associates. The other type, which had the strongest response to one picture during the cue presentation, exhibited increasing activity during the delay period when the associate of that picture was used as a cue. These results provide new evidence that single neurons acquire selectivity for visual patterns through associative learning. They also indicate neural mechanisms for storage and retrieval in the long-term memory of paired associates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wechsler, D. Wechsler Memory Scale-Revised (The Psychological Corporation, Harcourt Brace Jovanovich, San Antonio, 1987).

    Google Scholar 

  2. Meyer, V. & Yates, A. J. J. Neurol. Neurosurg. Psychiat. 18, 44–52 (1955).

    Article  Google Scholar 

  3. Milner, B. Brain Mechanisms Underlying Speech and Language, 122–145 (Grune & Stratton, New York, 1967).

    Google Scholar 

  4. Jones, M. K. Neuropsychologia 12, 21–30 (1974).

    Article  CAS  Google Scholar 

  5. Petrides, M. Neuropsychologia 23, 601–614 (1985).

    Article  CAS  Google Scholar 

  6. Goldstein, L. H., Canavan, A. G. M. & Polkey, C. E. Cortex 24, 41–52 (1988).

    Article  CAS  Google Scholar 

  7. Murray, E. A., Gaffan, D. & Mishkin, M. Soc. Neurosci. Abstr. 14, 2 (1988).

    Google Scholar 

  8. Miyashita, Y. & Chang, H. S. Nature 331, 68–70 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Miyashita, Y. Nature 335, 817–820 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Snedecor, G. W. & Cochran, W. G. Statistical Methods 8th edn, 97 (Iowa State University Press, Ames, 1989).

    MATH  Google Scholar 

  11. Perrett, D. I., Rolls, E. T. & Caan, W. Expl Brain Res. 47, 329–342 (1982).

    Article  CAS  Google Scholar 

  12. Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. J. Neurosci. 4, 2051–2062 (1984).

    Article  CAS  Google Scholar 

  13. Schwartz, E. L., Desimone, R., Albright, T. D. & Gross, C. G. Proc. natn. Acad. Sci. U.S.A. 80, 5776–5778 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Artola, A. & Singer, W. Nature 330, 649–652 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Frégnac, Y., Shulz, D., Thorpe, S. & Bienenstock, E. Nature 333, 367–370 (1988).

    Article  ADS  Google Scholar 

  16. Bruce, C. J. & Goldberg, M. E. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  Google Scholar 

  17. Mauritz, K.-H. & Wise, S. P. Expl Brain Res. 61, 229–244 (1986).

    Article  CAS  Google Scholar 

  18. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  19. Milner, B. Clin. Neurosurg 19, 421–446 (1972).

    Article  CAS  Google Scholar 

  20. Squire, L. R., Cohen, N. J. & Nadel, L. Memory Consolidation: Psychobiology of Cognition, 185–210 (Lawrence Erlbaum, Hillsdale, 1984).

    Google Scholar 

  21. Insausti, R., Amaral, D. G. & Cowan, W. M. J. comp. Neurol. 264, 356–395 (1987).

    Article  CAS  Google Scholar 

  22. Webster, M. J., Ungerleider, L. G. & Bachevalier, J. J. Neurosci. 11, 1095–1116 (1991).

    Article  CAS  Google Scholar 

  23. Zahn, C. T. & Roskies, R. Z. IEEE Trans. Comput. 21, 269–281 (1972).

    Article  Google Scholar 

  24. Rolls, E. T. et al. J. Neurosci. 9, 1835–1845 (1989).

    Article  CAS  Google Scholar 

  25. Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, K., Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991). https://doi.org/10.1038/354152a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354152a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing