Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spinel elasticity and seismic structure of the transition zone of the mantle

Abstract

THERE is continuing debate about whether the upper mantle is chemically stratified, and whether the seismic discontinuity at 400 km depth represents a chemical boundary, a phase change of the (Mg, Fe)2SiO4 component from the β phase (olivine) to the p phase, or a combination of both. Recent developments in high-pressure synthesis1,2 and ultrasonic interferometry3,4 have made possible measurements of elastic-wave velocities in small, poly-crystalline samples of high-pressure phases. By combining our new acoustic measurements on the spinel (γ) phase of Mg2 SiO4 with existing data for the α and β phases, we present here velocity profiles for the M2SiO4 component of the mantle (where M represents Mg or Fe) to depths of about 600 km. We find it to be unlikely that any seismologically observable velocity discontinuity at about 520 km depth can be attributed to this component, although the contrast in impedance (the product of density and velocity) might be sufficient for the β→γtransformation to be observed in long-period seismic reflection studies at near-normal incidence5. The velocity gradients in the transition zone, particularly for shear waves, are steeper than would be expected for simple adiabatic compression of likely mantle compositions, suggesting that alternative explanations including chemical heterogeneity and anelastic relaxation need to be explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gwanmesia, G. D., Liebermann, R. C. & Guyot, F. Geophys. Res. Lett. 17, 1331–1334 (1990).

    Article  ADS  Google Scholar 

  2. Gwanmesia, G. D. & Liebermann, R. C. in High Pressure Research: Applications to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) (TerraPub, Tokyo, in the press).

  3. Rigden, S. M., Jackson, I., Niesler, H., Ringwood, A. E. & Liebermann, R. C. Geophys. Res. Lett. 15, 605–608 (1988).

    Article  CAS  ADS  Google Scholar 

  4. Niesler, H. & Jackson, I. J. acoust. Soc. Am. 86, 1573–1585 (1989).

    Article  CAS  ADS  Google Scholar 

  5. Shearer, P. M. Nature 344, 121–126 (1990).

    Article  ADS  Google Scholar 

  6. Sawamoto, H., Weidner, D. J., Sasaki, S. & Kumazawa, M. Science 224, 749–751 (1984).

    Article  CAS  ADS  Google Scholar 

  7. Weidner, D. J., Sawamoto, H., Sasaki, S. & Kumazawa, M. J. geophys. Res. 89, 7852–7860 (1984).

    Article  CAS  ADS  Google Scholar 

  8. Bina, C. & Wood, B. J. J. geophys. Res. 92, 4853–4866 (1987).

    Article  CAS  ADS  Google Scholar 

  9. Duffy, T. S. & Anderson, D. L. J. geophys. Res. 94, 1895–1912 (1989).

    Article  CAS  ADS  Google Scholar 

  10. Rigden, S. M. & Jackson, I. J. geophys. Res. 96, 9999–10006 (1991).

    Article  ADS  Google Scholar 

  11. Gwanmesia, G. D., Rigden, S. M., Liebermann, R. C. & Jackson, I. Science 250, 794–797 (1990).

    Article  CAS  ADS  Google Scholar 

  12. Rigden, S. M., Gwanmesia, G. D., Jackson, I. & Liebermann, R. C. in High Pressure Research: Applications to Earth and Planetary Sciences (eds Syono, Y. & Manghnani, M. H.) (TerraPub, Tokyo, in the press).

  13. Birch, F. J. geophys. Res. 57, 227–285 (1952).

    Article  CAS  ADS  Google Scholar 

  14. Kumazawa, M. & Anderson, O. C. J. geophys. Res. 74, 5961–5972 (1969).

    Article  CAS  ADS  Google Scholar 

  15. Graham, E. K. & Barsch, G. R. J. geophys. Res. 74, 5949–5960 (1969).

    Article  CAS  ADS  Google Scholar 

  16. Katsura, T. & Ito, E. J. geophys. Res. 94, 15663–15670 (1989).

    Article  ADS  Google Scholar 

  17. Akaogi, M., Ito, E. & Navrotsky, A. J. geophys. Res. 94, 15671–15685 (1989).

    Article  ADS  Google Scholar 

  18. Irifune, T. & Ringwood, A. E. in High-Pressure Research in Mineral Physics. (eds Manghnani, M. H. & Syono, Y.) (TerraPub, Tokyo; AGU, Washington DC 1987).

    Google Scholar 

  19. Kennett, B. L. N. Geophys. Res. Lett. 18, 1115–1118 (1991).

    Article  ADS  Google Scholar 

  20. Le Fevre, L. V. & Helmberger, D. V. J. geophys. Res. 94, 17729–17765 (1989).

    Article  ADS  Google Scholar 

  21. Grand, S. P. & Helmberger, D. V. Geophys. J. R. astr. Soc. 76, 399–438 (1984).

    Article  ADS  Google Scholar 

  22. Walck, M. C. Geophys. J. R. astr. Soc. 76, 697–723 (1984).

    Article  ADS  Google Scholar 

  23. Walck, M. C. Geophys. J. R. astr. Soc. 81, 243–276 (1985).

    Article  ADS  Google Scholar 

  24. Yeganeh-Haeri, Weidner, D. J. & Ito, I. Geophys. Res. Lett. 17, 2453–2456 (1990).

    Article  CAS  ADS  Google Scholar 

  25. Jackson, I., Paterson, M. S. & FitzGerald, J. G. Geophys. J. Int. (in the press).

  26. Vaughan, P. J. & Kohstedt, D. L. Phys. Chem. Miner. 7, 241–245 (1981).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigden, S., Gwanmesia, G., Gerald, J. et al. Spinel elasticity and seismic structure of the transition zone of the mantle. Nature 354, 143–145 (1991). https://doi.org/10.1038/354143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing