Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anhydrite-bearing pumices from Mount Pinatubo: further evidence for the existence of sulphur-rich silicic magmas

Abstract

THE eruption of EI Chichón in 1982 showed that relatively small but sulphur-rich eruptions from calc-alkaline volcanoes can produce long-lived stratospheric clouds of sulphate aerosols1,2, which affect the global climate3,4. Here we report the presence of primary anhydrite (CaSO4) phenocrysts in dacitic pumice clasts from the 14–15 June eruption of Mount Pinatubo, which clearly shows that the Mount Pinatubo magma is also rich in sulphur. The post-eruptive sulphur content of the Pinatubo pumices ranges from 0.37 to 0.48 wt% SO3. The considerable amount of sulphate aerosol injected into the stratosphere by the Mount Pinatubo eruptions5 should lead to a measurable cooling of the Earth's surface over the next few years, and could also trigger heterogeneous chemical reactions leading to stratospheric ozone depletion6. This new eruption of a sulphur-rich silicic magma thus shows that the EI Chichón eruption is not unique, and that climate-modifying eruptions of this type may be more common than previously believed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pollack, J. B., Toon, O. B., Danielsen, E. F., Hofman, D. J. & Rosen, J. M. Geophys. Res. Lett. 10, 989–992 (1983).

    Article  ADS  Google Scholar 

  2. Hofmann, D. J. & Rosen, J. M. J. geophys. Res. 92, 9825–9830 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Rampino, M. R. & Self, S. Nature 310, 677–679 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Self, S. & Rampino, M. R. EOS 69, 83–86 (1988).

    Article  ADS  Google Scholar 

  5. Bluth, G., Doiron, S., Krueger, A., Schnetzler, C. & Walter, L. Geophys. Res. Lett. (in the press).

  6. Pitari, G., Visconti, G. & Rizi, V. Geophys. Res. Lett. 18, 833–836 (1991).

    Article  ADS  Google Scholar 

  7. Global Volcanism Network Bull. 16, 2–7 (1991).

  8. Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. J. Volcan. geotherm. Res. 23, 69–108 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Carroll, M. & Rutherford, M. J. J. geophys. Res. 90c, 601–612 (1985).

    Article  ADS  Google Scholar 

  10. Luhr, J. F. J. Petrology 31, 1071–1114 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, Berlin, 1981).

    Book  Google Scholar 

  12. Carmichael, I. S. E. Contr. Miner. Petrol. 14, 39–64 (1967).

    Google Scholar 

  13. Kilinc, A., Carmichael, I. S. E. Rivers, M. L. & Sack, R. O. Contr. Miner. Petrol. 83, 136–140 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Basaltic Volcanism Study Project 193 (Pergamon, New York, 1981).

  15. Rose, W. I. Jr. Wunderman, R. L., Hoffman, M. F. & Gale, L. J. Volcan. geotherm. Res. 17, 133–157 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Sigurdsson, H. EOS 63, 601–602 (1982).

    Article  ADS  Google Scholar 

  17. Haughton, D. R., Roeder, P. L. & Skinner, B. J. Econ. Geol. 69, 451–467 (1974).

    Article  CAS  Google Scholar 

  18. Devine, J. D., Sigurdsson, H., Davis, A. N. & Self, S. J. geophys. Res 89, 6309–6325 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Scott, W. E., Hoblitt, R. P., Daligdig, J. A., Besana, G. & Tubianosa, B. S. EOS abstr. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, A., Demaiffe, D., Mattielli, N. et al. Anhydrite-bearing pumices from Mount Pinatubo: further evidence for the existence of sulphur-rich silicic magmas. Nature 354, 139–140 (1991). https://doi.org/10.1038/354139a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354139a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing