Abstract
EXISTING methods for the synthesis and screening of large numbers of peptides are limited by their inability to generate and screen the requisite number (millions) of individual peptides1–4 and/or their inability to generate unmodified free peptides in quantities able to interact in solution4–8. We have circumvented these limitations by developing synthetic peptide combinatorial libraries composed of mixtures of free peptides in quantities which can be used directly in virtually all existing assay systems. The screening of these heterogeneous libraries, along with an iterative selection and synthesis process, permits the systematic identification of optimal peptide ligands. Starting with a library composed of more than 34 million hexa-peptides, we present here the precise identification of an antigenic determinant recognized by a monoclonal antibody as well as the straightforward development of new potent antimicrobial peptides.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Mini-αA-Crystallin Stifled Melittin-Induced Haemolysis and Lymphocyte Lysis
International Journal of Peptide Research and Therapeutics Open Access 01 March 2023
-
T cell Repertoire Profiling and the Mechanism by which HLA-B27 Causes Ankylosing Spondylitis
Current Rheumatology Reports Open Access 05 October 2022
-
Affinity Selection from Synthetic Peptide Libraries Enabled by De Novo MS/MS Sequencing
International Journal of Peptide Research and Therapeutics Open Access 03 February 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Merrifield, R. B. J. Am. chem. Soc. 85, 2149–2154 (1963).
Geysen, H. M., Meloen, R. H. & Barteling, S. J. Proc. natn. Acad. Sci. U.S.A. 81, 3998–4002 (1984).
Houghten, R. A. Proc. natn. Acad. Sci. U.S.A. 82, 5131–5135 (1985); US Patent 4,631,211.
Fodor, S. P. A. et al. Science 251, 767–773 (1991).
Geysen, H. M., Rodda, S. J. & Mason, T. J. Molec. Immun. 23, 709–715 (1986).
Scott, J. K. & Smith, G. P. Science 249, 386–390 (1990).
Devlin, J. J., Panganiban, L. C. & Devlin, P. E. Science 249, 404–406 (1990).
Cwirla, S. E., Peters, E. A., Barrett, R. W. & Dower, W. J. Proc. natn. Acad. Sci. U.S.A. 87, 6378–6382 (1990).
Houghten, R. A., Hoffman, S. R. & Niman, H. L. Vaccines 86 (eds Brown, F., Chanock, R. M. & Lerner, R. A.) 21–25 (Cold Spring Harbor Laboratory Press, New York, 1986).
Appel, J. R., Pinilla, C., Niman, H. & Houghten, R. A. J. Immun. 144, 976–983 (1990).
Pinilla, C., Appel, J. R. & Houghten, R. A. Peptides, Proc. 21st Eur. Peptide Symp. (eds Giralt, E. & Andreu, D.) 860 (Escom Science, Leiden, the Netherlands, 1991).
Houghten, R. A., Appel, J. R. & Pinilla, C. Peptide Chemistry 1987 (eds Shiba, T. & Sakakibara, S.) 769–774 (Protein Research Foundation, Minoh-Shi, Osaka, 1987).
Houghten, R. A., Appel, J. R. & Pinilla, C. Vaccines 88 (eds Ginsberg, H., Brown, F., Lerner, R. & Chanock, R. M.) 9–12 (Cold Spring Harbor Laboratory Press, New York, 1988).
Boman, H. G. & Hultmark, D. A. Rev. Microbiol. 41, 103–126 (1987).
Zasloff, M. Proc. natn. Acad. Sci. U.S.A. 84, 5449–5453 (1987).
Selsted, M. E., Brown, D. M., DeLange, R. J. & Lehrer, R. I. J. biol. Chem. 258, 14485–14489 (1983).
Cuervo, J. H., Rodriguez, B. & Houghten, R. A. Peptide Res. 1, 81–86 (1988).
Blondelle, S. E. & Houghten, R. A. Peptide Res. 4, 12–18 (1991).
Blondelle, S. E. & Houghten, R. A. Biochemistry 30, 4671–4678 (1991).
Wilson, I. A. et al. Cell 37, 767–778 (1984).
Gisin, B. F. Analytica chim. Acta. 58, 248–249 (1972).
Kaiser, E. T., Colescott, R. L., Bossinger, C. D. & Cook, P. I. Analyt. Biochem. 34, 595–598 (1970).
Tam, J. P., Heath, W. F. & Merrifield, R. B. J. Am. chem. Soc. 105, 6442–6455 (1983).
Houghten, R. A., Bray, M. K., DeGraw, S. T. & Kirby, C. J. Int. J. Peptide Protein Res. 27, 673–678 (1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Houghten, R., Pinilla, C., Blondelle, S. et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86 (1991). https://doi.org/10.1038/354084a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/354084a0
This article is cited by
-
Mini-αA-Crystallin Stifled Melittin-Induced Haemolysis and Lymphocyte Lysis
International Journal of Peptide Research and Therapeutics (2023)
-
Affinity Selection from Synthetic Peptide Libraries Enabled by De Novo MS/MS Sequencing
International Journal of Peptide Research and Therapeutics (2022)
-
T cell Repertoire Profiling and the Mechanism by which HLA-B27 Causes Ankylosing Spondylitis
Current Rheumatology Reports (2022)
-
Peptide Affinity Chromatography Applied to Therapeutic Antibodies Purification
International Journal of Peptide Research and Therapeutics (2021)
-
Affordable Microfluidic Bead-Sorting Platform for Automated Selection of Porous Particles Functionalized with Bioactive Compounds
Scientific Reports (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.