Letter | Published:

Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses

Subjects

Abstract

THE possibility that postsynaptic spines on neuronal dendrites are discrete biochemical compartments for Ca2+-activated processes involved in synaptic plasticity1–6 is a widely proposed concept that has eluded experimental demonstration. Using microfluorometry on CA3 neurons in hippocampal slices, we show here that with weak presynaptic stimulation of associative/commissural fibres, Ca2+ accumulates in single postsynaptic spines but not in the parent dendrite. Stronger stimulation also promotes changes in dendrites. The NMDA-receptor antagonist AP-5 blocks changes in Ca2+ in spines. Sustained steep Ca2+gradients between single spines and the parent dendrite, often lasting several minutes, develop with repeated stimulation. The observed compartmentalization allows for the specificity7,8, cooperativity9 and associativity10–14 displayed by memory models such as long-term potentiation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Dingledine, R. J. Physiol. 343, 385–405 (1983).

  2. 2

    Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).

  3. 3

    Mayer, M. L. & Westbrook, G. L. J. Physiol. 394, 501–528 (1987).

  4. 4

    Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

  5. 5

    Collingridge, G. L., Kehl, S. L. & McLennan, H. J. Physiol. 334, 33–46 (1983).

  6. 6

    Zalutsky, R. A. & Nicoll, R. A. Science 248, 1619–1624 (1990).

  7. 7

    Kelso, S. R., Ganong, A. H. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 83, 5326–5330 (1986).

  8. 8

    Malinow, R. Science 252, 722–724 (1991).

  9. 9

    McNaughton, B. L., Douglas, R. M. & Godard, G. V. Brain Res. 157, 277–293 (1978).

  10. 10

    Levy, W. B. & Steward, O. Brain Res. 175, 233–245 (1979).

  11. 11

    Barrionuevo, G. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 80, 7347–7351 (1983).

  12. 12

    Madison, D. V., Malenka, R. C. & Nicoll, R. A. A. Rev. Neurosci. 14, 379–397 (1991).

  13. 13

    Brown, T. H., Kairiss, E. W. & Kennan, C. L. A. Rev. Neurosci. 13, 475–511 (1990).

  14. 14

    Cotman, C. W., Monaghan, D. T. & Ganong, A. H. A. Rev. Neurosci. 11, 61–80 (1988).

  15. 15

    Harris, E. W. & Cotman, C. W. Neurosci. Lett. 70, 132–137 (1986).

  16. 16

    Harris, K. M. & Stevens, J. K. J. Neurosci. 9, 2982–2997 (1988).

  17. 17

    Müller, W. & Connor, J. A. Neuron 6, 901–905 (1991).

  18. 18

    Connor, J. A., Wadman, W. J., Hockberger, P. E. & Wong, R. K. S. Science 240, 649–653 (1988).

  19. 19

    Müller, W., Misgeld, U. & Heinemann, U. Expl Brain Res. 72, 287–298 (1988).

  20. 20

    Tank, D. W., Sugimori, M., Connor, J. A. & Llinas, R. Science 242, 773–777 (1988).

  21. 21

    Regehr, W. G., Connor, J. A. & Tank, D. W. Nature 341, 533–536 (1989).

  22. 22

    Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

  23. 23

    Tsien, R. Y. A. Rev. Neurosci. 12, 227–253 (1989).

Download references

Author information

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.