Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei

Article metrics

Abstract

THE unicellular eukaryote Trypanosoma brucei evades the immune defence of its mammalian host by antigenic variation1. The genes for variant-specific surface glycoproteins (VSGs) are expressed within large multicistronic transcription units2. Mature messenger RNAs are produced by trans-splicing and polyadenylation3–5. A remarkable feature of the transcription of VSG genes is its insensitivity to the RNA polymerase II inhibitor α-amanitin6. This has led to the speculation that RNA polymerase I, normally only involved in the transcription of ribosomal RNA genes, also mediates expression of these surface antigen genes. In higher eukaryotes, however, transcripts produced by RNA polymerase I were found to be poor substrates for processing into mature mRNAs7–. In contrast, we show here that the RNA polymerase I of T. brucei can mediate the efficient production of functional mRNA for neomycin phosphotransferase. This exceptional ability may be related to the unusual way in which pre-mRNAs are capped in trypanosomes. In most eukaryotes, mRNAs are modified at their 5′end by a capping activity associated with RNA polymerase II10; in trypanosomes, mRNAs acquire their 5′-cap from capped mini-exon donor RNA by trans-splicing3–, a process that could be independent of the RNA polymerase producing the pre-mRNA.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cross, G. A. M. A. Rev. Immun. 8, 83–110 (1990).

  2. 2

    Johnson, P. J., Kooter, J. M. & Borst, P. Cell 51, 273–281 (1987).

  3. 3

    Murphy, W. J., Watkins, K. P. & Agabian, N. Cell 47, 517–525 (1986).

  4. 4

    Sutton, R. E. & Boothroyd, J. C. Cell 47, 527–535 (1986).

  5. 5

    Laird, P. W., Zomerdijk, J. C. B. M., De Korte, D. & Borst, P. EMBO J. 6, 1055–1062 (1987).

  6. 6

    Kooter, J. M. & Borst, P. Nucleic Acids Res. 12, 9457–9472 (1984).

  7. 7

    Grummt, I. & Skinner, J. A. Proc. natn. Acad. Sci. U.S.A. 82, 722–726 (1985).

  8. 8

    Smale, S. T. & Tjian, R. Molec. cell. Biol. 5, 352–362 (1985).

  9. 9

    Grimaldi, G. & Di Nocera, P. P. Nucleic Acids Res. 14, 6417–6432 (1986).

  10. 10

    Jove, R. & Manley, J. L. Proc. natn. Acad. Sci. U.S.A. 79, 5842–5846 (1982).

  11. 11

    Lopata, M. A., Cleveland, D. W. & Sollner-Webb, B. Proc. natn. Acad. Sci. U.S.A. 83, 6677–6681 (1986).

  12. 12

    Zomerdijk, J. C. B. M. et al. EMBO J. 9, 2791–2801 (1990).

  13. 13

    Ten Asbroek, A. L. M. A., Ouellette, M. & Borst, P. Nature 348, 174–175 (1990).

  14. 14

    White, T. C., Rudenko, G. & Borst, P. Nucleic Acids Res. 14, 9471–9489 (1986).

  15. 15

    Clayton, C. E. et al. Molec. cell. Biol. 10, 3036–3047 (1990).

  16. 16

    Sather, S. & Agabian, N. Proc. natn. Acad. Sci. U.S.A. 82, 5695–5699 (1985).

  17. 17

    Imboden, M., Blum, B., De Lange, T., Braun, R. & Seebeck, T. J. molec. Biol. 166, 393–402 (1986).

  18. 18

    Xiong, Y. & Eickbush, T. H. Cell 55, 235–246 (1988).

  19. 19

    Muscarella, D. E. & Vogt, V. M. Cell 56, 443–454 (1989).

  20. 20

    Salditt-Georgieff, M., Harpold, M., Cheng-Kiang, S. & Darnell, J. E. Jr, Cell 19, 69–78 (1980).

  21. 21

    Zomerdijk, J. C. B. M., Kieft, R., Duyndam, M., Shiels, P. G. & Borst, P. Nucleic Acids Res. 19, 1359–1368 (1991).

  22. 22

    Zinn, K., DiMaio, D. & Maniatis, T. Cell 34, 865–879 (1983).

  23. 23

    Saiki, R. K. et al. Science 239, 487–491 (1988).

  24. 24

    Zomerdijk, J. C. B. M., Kieft, R., Shiels, P. G. & Borst, P. Nucleic Acids Res. 19, 5153–5158 (1991).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.