Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Influence of oxygen exposure time on organic carbon preservation in continental margin sediments


Today, over 90% of all organic carbon burial in the ocean occurs in continental margin sediments1. This burial is intrinsically linked to the cycling of biogeochemically important elements (such as N, P, S, Fe and Mn) and, on geological timescales, largely controls the oxygen content of the atmosphere2,3,4. Currently there is a volatile debate over which processes govern sedimentary organic carbon preservation5,6,7,8. In spite of numerous studies demonstrating empirical relationships between organic carbon burial and such factors as primary productivity9, the flux of organic carbon through the water column10, sedimentation rate11,12, organic carbon degradation rate13, and bottom-water oxygen concentration8,14, the mechanisms directly controlling sedimentary organic carbon preservation remain unclear. Furthermore, as organic carbon burial is the process that, along with pyrite burial15, balances O2 concentrations in the atmosphere, it is desirable that any mechanism proposed to control organic carbon preservation include a feedback buffering atmospheric oxygen concentrations over geological time. Here we compare analyses of sediments underlying two regions of the eastern North Pacific Ocean, one which has oxygen-depleted bottom waters and one with typical oxygen distributions. Organic carbon burial efficiency is strongly correlated with the length of time accumulating particles are exposed to molecular oxygen in sediment pore waters. Oxygen exposure time effectively incorporates other proposed environmental variables8,9,10,11,12,13,14, and may exert a direct control on sedimentary organic carbon preservation and atmospheric oxygen concentrations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Water column O2 and sediment carbon contents for study sites from the Washington and Mexican margins.
Figure 2: Organic carbon burial efficiency as a function of oxygen exposure time.


  1. 1

    Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    CAS  Article  Google Scholar 

  2. 2

    Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hedges, J. I. Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 67–93 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).

    Google Scholar 

  5. 5

    Canfield, D. E. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Res. 36, 121–138 (1989).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Henrichs, S. M. Early diagenesis of organic matter in marine sediments: progress and perplexity. Mar. Chem. 39, 119–149 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Pedersen, T. F., Shimmield, G. B. & Price, N. B. Lack of enhanced preservation of organic matter in sediments under the oxygen minimum on the Oman margin. Geochim. Cosomochim. Acta. 56, 545–551 (1992).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Paropkari, A. L., Prakash Babu, C. & Mascarenhas, A. Acritical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments. Mar. Geol. 107, 213–226 (1992).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Calvert, S. E. & Pedersen, T. F. in Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments (eds Whelan, J. K. & Farrington, J. W.) 231–263 (Columbia Univ. Press, New York, 1992).

    Google Scholar 

  10. 10

    Jahnke, R. A. Early diagnesis and recycling of biogenic debris at the seafloor, Santa Monica Basin, California. J. Mar. Res. 48, 413–436 (1990).

    CAS  Article  Google Scholar 

  11. 11

    Müller, P. J. & Suess, E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans — I. Organic carbon preservation. Deep-Sea Res. A 26, 1347–1362 (1979).

    ADS  Article  Google Scholar 

  12. 12

    Betts, J. N. & Holland, H. D. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. Paleogeogr. Paleoclim. Paleoecol. 97, 5–18 (1991).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Emerson, S. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaean to Present (eds Sundquist, T. & Broecker, W. S.) 78–87 (Am. Geophys. Union, Washington DC, 1985).

    Google Scholar 

  14. 14

    Demaison, G. J. & Moore, G. T. Anoxic environments and oil source bed genesis. Org. Geochem. 2, 9–31 (1980).

    CAS  Article  Google Scholar 

  15. 15

    Berner, R. A. & Canfield, D. E. Anew model for atmospheric oxygen over phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Henrichs, S. M. & Reeburgh, W. S. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237 (1987).

    CAS  Article  Google Scholar 

  17. 17

    Reimers, C. E., Jahnke, R. A. & McCorkle, D. C. Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle. Glob. Biogeochem. Cycles 6, 199–224 (1992).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Carpenter, R., Bennet, J. T. & Peterson, M. L. 210Pb activities in and fluxes to sediments of the Washington continental slope and shelf. Geochim. Cosomochim. Acta. 45, 1155–1172 (1981).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Devol, A. H. & Christensen, J. P. Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J. Mar. Res. 51, 345–372 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1992).

    Google Scholar 

  21. 21

    Jahnke, R. A., Emerson, S. R. & Murray, J. W. Amodel of oxygen reduction, denitrification and organic matter remineralization in marine sediments. Limnol. Oceanogr. 27, 610–623 (1982).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Martin, W. R., Bender, M., Leinen, M. & Orchardo, J. Benthic organic carbon degradation and biogenic silica dissolution in the central equatorial Pacific. Deep-Sea Res. 38, 1481–1516 (1991).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Archer, D. & Devol, A. H. Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements. Limnol. Oceanogr. 37, 614–629 (1992).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Lehrman, A. Geochemical Processes: Water and Sediment Environments (Wiley & Sons, New York, 1979).

    Google Scholar 

  25. 25

    Calvert, S. E., Bustin, R. M. & Pedersen, T. F. Lack of evidence for enhanced preservation of sedimentary organic matter in the oxygen minimum of the Gulf of California. Geology 20, 757–760 (1992).

    ADS  CAS  Article  Google Scholar 

  26. 26

    26. Keil, R. G., Hu, F. S., Tsamakis, E. C. & Hedges, J. I. Pollen in marine sediments as an indicator of oxidation of organic matter. Nature 369, 639–641 (1994).

    ADS  CAS  Article  Google Scholar 

  27. 27

    27. Cowie, G. L. & Hedges, J. I. Biochemical indicators of diagenetic alteration in natural organic matter mixtures. Nature 369, 304–307 (1994).

    ADS  CAS  Article  Google Scholar 

Download references


We thank B. Hales and J. Brandes for discussions, and D. Lambourn, E. Tsamakis, C.Thimsen, B. Paul, L. Balistrieri and numerous participants in the U.W. REU program for analytical assistance. This work was supported by NSF grants to A.H.D. and R.G.K.

Author information



Corresponding author

Correspondence to Hilairy E. Hartnett.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hartnett, H., Keil, R., Hedges, J. et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391, 572–575 (1998).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing