Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous assembly of marine dissolved organic matter into polymer gels


A large pool of organic carbon resides in the world's oceans in the form of dissolved organic matter (DOM)1,2. DOM is operationally defined as the fraction of organic matter that passes through a filter with a given pore size (which can range from less than 0.1 μm to 0.46 μm). This fraction has a longer oceanic residence time — and is generally less biodegradable — than particulate organic matter (POM)1,2,3,4. Processes transforming DOM into POM are therefore crucial for our understanding of the cycling of organic material in the oceans1,2,3,4. The aggregation of marine colloids, which constitute 10–40% of DOM2,3,5, is thought to be an important step in the transformation of DOM into POM3. It has been suggested that colloids, as well as transparent exopolymer particles and large aggregates (‘marine snow’) can be viewed as polymer gels6,7,8. Whether free DOM polymers can indeed spontaneously assemble to form polymer gels has, however, not yet been shown. Here we present experimental observations that demonstrate that marine polymer gels can assemble from free DOM polymers, and that their formation mechanism, physical characteristics and mineralization can be understood in terms of polymer gel theory9,10,11. The principles and methods of polymer gel physics thus have the potential to provide profound new insights into the processes controlling the exchange between the DOM and POM pools and the cycling of marine organic matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymer gel size as a function of assembly time and pH.
Figure 3: Averaged X-ray spectra showing the elemental composition inside a marine microgel.
Figure 2: The concentration and size of marine microgels as a function of time of assembly.
Figure 4: Processes transforming free marine polymers and polymer gels.

Similar content being viewed by others


  1. Hedges, J. I. Global biogeochemical cycles: progress and problems. Mar. Chem. 39, 67–93 (1992).

    Article  CAS  Google Scholar 

  2. Guo, L. & Santschi, P. H. Composition and cycling of colloids in marine environments. Rev. Geophys. 35, 17–40 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Kepkay, P. E. Particle aggregation and the biological reactivity of colloids. Mar. Ecol. Prog. Ser. 109, 293–304 (1994).

    Article  ADS  Google Scholar 

  4. Amon, R. M. W. & Benner, R. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 41, 41–51 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Wells, M. L. & Goldberg, E. D. The distribution of colloids in the North Atlantic and Southern Oceans. Limnol. Oceanogr. 39, 286–302 (1994).

    Article  ADS  Google Scholar 

  6. Cowen, J. P. & Holloway, C. F. Structural and chemical analysis of marine aggregates: in situ macrophotography and laser confocal and electron microscopy. Mar. Biol. 126, 163–174 (1996).

    Article  Google Scholar 

  7. Alldredge, A. L., Passow, U. & Logan, E. B. The abundance and significance of a class of large, transparent organic particles in the oceans. Deep-Sea Res. 40, 1131–1140 (1993).

    Article  CAS  Google Scholar 

  8. Benedetti, M. F., Van Riemsdijk, W. H. & Koopal, L. K. Humic substances considered as a heterogenous Donnan gel phase. Environ. Sci. Techol. 30, 1805–1813 (1996).

    Article  ADS  CAS  Google Scholar 

  9. de Gennes, P. G. & Leger, L. Dynamics of entangled polymer chains. Annu. Rev. Phys. Chem. 33, 49–61 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Edwards, S. F. The theory of macromolecular networks. Biorheology 23, 589–603 (1986).

    Article  CAS  Google Scholar 

  11. Li, Y. & Tanaka, T. Phase transitions of gels. Annu. Rev. Mater. Sci. 22, 243–277 (1992).

    Article  ADS  Google Scholar 

  12. Stordal, M. C., Santschi, P. H. & Gill, G. A. Colloidal pumping: evidence for the coagulation process using natural colloids tagged with 230Hg. Environ. Sci. Technol. 30, 3335–3340 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Verdugo, P. Polymer gel phase transition in condension-decondensation of secretory products. Adv. Polym. Sci. 110, 145–156 (1994).

    Article  Google Scholar 

  14. Aluwihare, L. I., Repeta, D. J. & Chen, R. F. Amajor biopolymeric component to dissolved organic carbon in surface sea water. Nature 387, 166–169 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Caswell, A. H. & Hutchison, J. D. Visualization of membrane bound cations by a fluorescent technique. Biochem. Biophys. Res. Commun. 42, 43–49 (1971).

    Article  CAS  Google Scholar 

  16. Katchalsky, A., Lifson, S. & Eisenberg, H. J. Equation of swelling for polyelectrolyte gels. J. Polym. Sci. 7, 571–574 (1951).

    Article  ADS  CAS  Google Scholar 

  17. Tam, P. Y. & Verdugo, P. Control of mucus hydration as a Donnan equilibrium process. Nature 292, 340–342 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Crenshaw, M. A. in Biological Mineralization and Demineralization (ed. Nancollas, G. H.) 243–257 (Springer, Berlin, 1982).

    Book  Google Scholar 

  19. Verdugo, P., Orellana, M. V. & Freitag, C. The secretory granule as a biomimetic model for drug delivery. Proc. 22nd Int. Symp. on Controlled Release of Bioactive Materials 22, 25 (1995).

    Google Scholar 

  20. Marsh, M. E. Polyanion-mediated mineralization-assembly and reorganization of acidic polysaccharides in the Golgi system of a cocolithphorid algal during mineral deposition. Protoplasma 177, 108–122 (1994).

    Article  CAS  Google Scholar 

  21. Addadi, L., Moradian, J., Shay, E., Maraudas, N. G. & Weiner, S. Achemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl. Acad. Sci. USA 84, 2732–2736 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Lubbers, G. W., Gieskes, W. W. C., del Castilho, P., Salomons, W. & Bril, J. Manganese accumulation in the high pH microenvironment of Phaeocystis sp. (Haptophyceae) colonies from the North Sea. Mar. Ecol. Prog. Ser. 59, 285–293 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Morse, J. W. & Mackenzie, F. T. Geochemistry of Sedimentary Carbonates (Elsevier, Amsterdam, 1990).

    Google Scholar 

  24. Orellana, M. V. & Perry, M. J. An immunoprobe to measure Rubisco concentrations and maximal photosynthetic rates of individual phytoplankton cells. Limnol. Oceanogr. 37, 478–490 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I. & Hatcher, P. G. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255, 1561–1564 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Mayer, L. M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58, 1271–1284 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Nishikawa, T., Akiyoshi, K. & Sunamoto, J. Supramolecular assembly between nanoparticles of hydrophobized olysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullalan and α-chymotrypsin. Macromolecules 27, 7654–7659 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Largeau, C. in Role of Nonliving Organic Matter in the Earth's Carbon Cycle (eds Zepp, R. G. & Sonntag, C.) 275–292 (Wiley, New York, 1995).

    Google Scholar 

  29. Kieber, R. J., Zhou, X. & Mopper, K. Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters; fate of riverine carbon in the sea. Limnol. Oceanogr. 35, 1503–1515 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Provencher, S. W. Aconstrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 27, 213–227 (1982).

    Article  ADS  Google Scholar 

Download references


We thank M. J. Perry, P. Jumars and J. Hedges for their comments and suggestions. This work was supported by the US NSF (Polar Program) and the Royalty Research Fund (University of Washington).

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, WC., Orellana, M. & Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing