Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Air-stable alkali-metal colloids and the blue colour in Wurtz syntheses

Abstract

POLYSILANES are used as resists in microlithography and as precursors for silicon carbide ceramics1–3. We have been investigating the formation of polysilanes by the reductive dechlorination polymerization of dichloro-organosilanes with sodium4—a modification of the well-known Wurtz reaction, in which organic halides are reductively coupled using sodium to form carbon-carbon single bonds. In all such reactions, after a period of time a blue precipitate is formed, but no characterization of this solid has so far been reported. It has been suggested (without spectroscopic evidence) that the colour in the polysilane synthesis is due to defects in sodium chloride1, sodium colour centres in sodium chloride3,5, reactive polysilane chain-ends3 or a stabilized organic radical6. The first of these suggestions has been tacitly accepted despite the fact that the most common defects in sodium chloride are F centres (anion vacancies with trapped electrons from excess sodium atoms) which give the salt a yellow colour7,8. Here we present spectroscopic results suggesting that the blue colour is due to colloidal alkali-metal particles formed during the reaction. These particles are contained in a matrix composed of an intimate mixture of polymer and alkali-metal halide, and are remarkably stable in air. It is most unusual for colloidal metal particles to be formed under such mild conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Michl, J. & Miller, R. D. Chem. Rev. 89, 1359–1410 (1989).

    Article  Google Scholar 

  2. West, R. J. organomet. Chem., 300, 327–346 (1986).

    Article  CAS  Google Scholar 

  3. Worsfold, D. G. in Inorganic and Organometallic Polymers. ACS Symp. Ser. 360 (eds Allcock, H. R., Wynne, K. J. & Zeldin, M.) 101–111 (American Chemical Society, Washington DC, 1988).

    Book  Google Scholar 

  4. Cragg, R. H., Jones, R. G., Swain, A. C. & Webb, S. J. J. chem. Soc. Chem. Commun 1147–1148 (1990).

  5. Hengge, E. & Reuter, H. Naturwissenschaften, 42, 514 (1962).

    Article  ADS  Google Scholar 

  6. Burkhard, C. A. J. Am. chem. Soc. 71, 963–964 (1949).

    Article  CAS  Google Scholar 

  7. Compton, W. D. & Schulman, J. H. Color Centers in Solids, 29; 52–53 (MacMillan, New York, 1962).

    Google Scholar 

  8. Doyle, W. T. Phys. Rev. 111, 1067–1072 (1958).

    Article  ADS  CAS  Google Scholar 

  9. Wurtz, A. Justus Liebigs Ann. Chem. 96, 364–375 (1855).

    Article  Google Scholar 

  10. March, J. Advanced Organic Chemistry. Reactions, Mechanism, and Structure, 2nd edn, 407–412 (McGraw Hill, London 1977).

    Google Scholar 

  11. Hughes, A. E. & Jain, S. C. Adv. Phys. 28, 717–828 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Vitol, A. Ya., Kharakhash'yan, E. G., Cherkasov, F. G. & Shvarts, K. K. Fizika Tverd. Tela 13, 2133–2135 (1971); (Engl. transl.) Sov. Phys. Solid St. 13, 1787–1789 (1972).

    Google Scholar 

  13. Gordon, D. A. Phys. Rev. B13, 3738–3747 (1976).

    Article  ADS  CAS  Google Scholar 

  14. McMillan, R. C. J. Phys. Chem. Solids 25, 773–775 (1964).

    Article  ADS  CAS  Google Scholar 

  15. Guy, S. C., Edmonds, R. N. & Edwards, P. P. J. chem. Soc. Faraday II, 81, 937–947 (1985).

    Article  CAS  Google Scholar 

  16. Feher, G. & Kip, A. F. Phys. Rev. 98, 337–348 (1955).

    Article  ADS  CAS  Google Scholar 

  17. Seidel, H. & Wolf, H. C. in Physics of Color Centres (ed. Fowler, W. B.) 555 (Academic, New York/London, 1968).

    Google Scholar 

  18. Karatsu, T. et al. J. Am. chem. Soc. 113, 2003–2010 (1991).

    Article  Google Scholar 

  19. Zeigler, J. N., Harrah, L. A. & Johnson, A. W. Polymer Preprints 28, 424–425 (1987).

    CAS  Google Scholar 

  20. Trefonas, P. & West, R. Inorg. Synth. 25, 56–60 (1989).

    Google Scholar 

  21. Smithard, M. A. & Tran, M. Q. Helv. Phys. Acta 46, 869–888 (1974).

    CAS  Google Scholar 

  22. Doyle, W. T. Proc. Phys. Soc. 75, 649–663 (1960).

    Article  ADS  CAS  Google Scholar 

  23. Radchenko, I. S. Optik. Spektrosk. 25, 899–902 (1968); (Engl. trans.) Opt. Spectrosc. 25, 500–501 (1968).

    CAS  Google Scholar 

  24. Scott, A. B., Smith, W. A. & Thompson, M. A. J. phys. Chem. 57, 757–761 (1953).

    Article  CAS  Google Scholar 

  25. Aso, J., Baba, M. & Ikeda, T. Jap. J. appl. Phys. 29, 308–312 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Kleinschrod, F. G. Ann. Phys. 27, 97–107 (1936).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benfield, R., Cragg, R., Jones, R. et al. Air-stable alkali-metal colloids and the blue colour in Wurtz syntheses. Nature 353, 340–341 (1991). https://doi.org/10.1038/353340a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353340a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing