Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The superconducting energy gap of Rb3C60

Abstract

THE discovery of superconductivity in potassium-doped C60(ref. 1) has been followed by an intense effort to understand the physics and chemistry of metal-doped fullerene solids2–13. Experimental studies of alkali-metal-doped C60 have now provided insight into the structure7,13 and the coherence length and penetration depth4 of the superconducting phase. No measurements of the superconducting energy gap (Δ) have, however, been reported. The BCS theory of superconductivity15, which has been used to interpret much of this experimental work2,4,9–13, predicts (in the limit of weak coupling) that the reduced energy gap 2Δ/kTC has a material-independent value of 3.53. Values in excess of 3.5 define strong coupling, and thus provide insight into the nature of the pairing mechanism. Here we describe the measurement of Δ for single-phase superconducting Rb3C60 by tunnelling spectroscopy using a scanning tunnelling microscope. We obtain a value of Δ at 4.2 K of 6.6±0.4 meV, corresponding to a reduced energy gap of 5.3. This is significantly larger than predicted by BCS theory, but similar in magnitude to values found for high-temperature copper oxide superconductors14. Our finding of strong coupling in Rb3C60 suggests the need for caution in using standard BCS theory to interpret superconductivity in metal-doped C60.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hebard, A. F. et al. Nature 350, 600–601 (1991).

    Article  CAS  ADS  Google Scholar 

  2. Rosseinsky, M. J. et al. Phys. Rev. Lett. 66, 2830–2832 (1991).

    Article  CAS  ADS  Google Scholar 

  3. Holczer, K. et al. Science 252, 1154–1157 (1991).

    Article  CAS  ADS  Google Scholar 

  4. Holczer, K. et al. Phys. Rev. Lett. 67, 271–274 (1991).

    Article  CAS  ADS  Google Scholar 

  5. Zhou, O. et al. Nature 351, 462–464 (1991).

    Article  CAS  ADS  Google Scholar 

  6. Benning, P. J., Martins, J. L., Weaver, J. H., Chibante, L. P. F. & Smalley, R. E. Science 252, 1417–1421 (1991).

    Article  CAS  ADS  Google Scholar 

  7. Stephens, P. W. et al. Nature 351, 632–634 (1991).

    Article  CAS  ADS  Google Scholar 

  8. Schirber, J. E. et al. Physica C178, 137–140 (1991).

    Article  CAS  Google Scholar 

  9. Sparn, G. et al. Science 252, 1829–1831 (1991).

    Article  CAS  ADS  Google Scholar 

  10. Tanigaki, K. et al. Nature 352, 222–223 (1991).

    Article  CAS  ADS  Google Scholar 

  11. Kelty, S. P., Chen, C. C. & Lieber, C. M. Nature 352, 223–225 (1991).

    Article  CAS  ADS  Google Scholar 

  12. Chen, C. C., Kelty, S. P. & Lieber, C. M. Science 253, 886–888 (1991).

    Article  CAS  ADS  Google Scholar 

  13. Fleming, R. M. et al. Nature 352, 787–788 (1991).

    Article  CAS  ADS  Google Scholar 

  14. Kirtley, J. R. Int. J. mod. Phys. 4, 201–237 (1990).

    Article  ADS  Google Scholar 

  15. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Phys. Rev. 108, 1175–1204 (1957).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  16. Wolf, E. L. Principles of Tunnelling Spectroscopy (Oxford University Press, New York, 1989).

    Google Scholar 

  17. Hawley, M. E. et al. Phys. Rev. Lett. 57, 629–632 (1986).

    Article  CAS  ADS  Google Scholar 

  18. Huang, Q. et al. Nature 347, 369–372 (1990).

    Article  CAS  ADS  Google Scholar 

  19. Haddon, R. C. et al. Nature 350, 320–321 (1991).

    Article  CAS  ADS  Google Scholar 

  20. Dynes, R. C., Narayanamurti, V. & Garno, J. P. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  CAS  ADS  Google Scholar 

  21. Mitrovic, B., Leavens, C. R. & Carbotte, J. P. Phys. Rev. B21, 5048–5054 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Chen, CC., Kelty, S. et al. The superconducting energy gap of Rb3C60. Nature 353, 333–335 (1991). https://doi.org/10.1038/353333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353333a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing