Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The photolysis of colloidal iron in the oceans

Abstract

THE extent to which iron limits primary production in open ocean waters depends not only on the aeolian supply1–3, but also on factors that control its availability for biological uptake. Although the marine chemistry of iron is poorly understood, much of it occurs in refractory participate1,2 and colloidal4 states—forms unavailable for direct assimilation by phytoplankton5,6. But iron availability depends on its chemical lability5, or ease of dissolution; hence processes that alter the lability of particulate and colloidal iron in sea water govern their availability to phytoplankton. Here we report that light increases the lability of colloidal iron in sea water of pH 8, with a photon-normalized spectral dependence that generally increases with decreasing wavelength from 400–300 nm. From optical modelling we predict that the incident solar spectrum, combined with the preferential attenuation of shorter ultraviolet wavelengths in sea water, will lead to a maximum depth-integrated photoreaction near 380–400 nm. Our results show that the photolysis of forms of solid iron may occur deep into the ocean's euphotic zone, and hence that the availability of iron to phytoplankton in the ocean may be much greater than previously thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Martin, J. H. & Gordon, R. M. Deep Sea Res. 35, 177–196 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. Deep Sea Res. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Mill, A. J. B. Envir. Tech. Lett. 1, 97–108 (1980).

    Article  CAS  Google Scholar 

  5. Wells, M. L., Mayer, L. M. & Guillard, R. R. L. Mar. Chem. 33, 23–40 (1991).

    Article  CAS  Google Scholar 

  6. Rich, H. W. & Morel, F. M. M. Limnol. Oceanogr. 35, 652–662 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Anderson, M. A. & Morel, F. M. M. Limnol. Oceanogr. 27, 789–813 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Morel, F. M. M. & Hudson, R. J. M. in Chemical Processes in Lakes (ed. Stumm, W.) 251–281 (Wiley, New York, 1985).

    Google Scholar 

  9. Wells, M. L. & Mayer, L. M. Deep Sea Res. (in the press).

  10. Millero, F. J. & Sotolongo, S. Geochim. cosmochim. Acta 53, 1867–1873 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Donard, O. F. X. et al. Mar. Chem. 27, 117–136 (1989).

    Article  CAS  Google Scholar 

  12. Wells, M. L. & Mayer, L. M. Mar. Chem. 32, 195–210 (1991).

    Article  CAS  Google Scholar 

  13. Zafiriou, O. C. & Dister, B. J. geophys. Res. 96, 4939–4945 (1991).

    Article  ADS  Google Scholar 

  14. O'Sullivan, D., Hanson, A., Miller, B. & Kester, D. Limnol. Oceanogr. (in the press).

  15. Wang, M. K. & Hsu, P. H. Soil Sci. Soc. Am J. 44, 1089–1095 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Heller, H. G. & Langan, J. R. J. chem. Soc. Perkin II, 341–343 (1981).

    Article  Google Scholar 

  17. Gast, P. R., Jursa, A. S., Castelli, J., Basu, S. & Aarons, J. Handbook of Geophysics and Space Environments (ed. Valley, S. L.) 16.1–16.38 (Air Force Cambridge Research Laboratory, Office of Aerospace Research, 1965).

    Google Scholar 

  18. Smith, R. C. & Baker, K. S. Appl. Opt. 20, 177–184 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Bricaud, A., Morel, A. & Prieur, L. Limnol. Oceanogr. 26, 43–53 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Kirk, J. T. O. Geophys. Res. 93, 10897–10908 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, M., Mayer, L., Donard, O. et al. The photolysis of colloidal iron in the oceans. Nature 353, 248–250 (1991). https://doi.org/10.1038/353248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353248a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing