Direct measurement of colloidal forces using an atomic force microscope

Abstract

THE forces between colloidal particles dominate the behaviour of a great variety of materials, including paints, paper, soil, clays and (in some circumstances) cells. Here we describe the use of the atomic force microscope to measure directly the force between a planar surface and an individual colloid particle. The particle, a silica sphere of radius 3.5 µm, was attached to the force sensor in the microscope and the force between the particle and the surface was measured in solutions of sodium chloride. The measurements are consistent with the double-layer theory1,2 of colloidal forces, although at very short distances there are deviations that may be attributed to hydration forces3–6 or surface roughness, and with previous studies on macroscopic systems4–6. Similar measurements should be possible for a wide range of the particulate and fibrous materials that are often encountered in industrial contexts, provided that they can be attached to the microscope probe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Derjaguin, B. & Landau, L. Acta Physiochem. 14, 633 (1941).

    Google Scholar 

  2. 2

    Verwey, E. G. W. & Overbeck, J. J. G. Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  3. 3

    Proc. Nobel Conf. Hydration Forces and Molecular Aspects of Solvation Chem. Scr. 25, 3–31 (1985).

  4. 4

    Horn, R. G., Smith, D. T. & Haller, W. Chem. Phys. Lett. 162, 404–408 (1989).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Rabinovich, I., Derjaguin, B. V. & Churaev, N. V. Adv. Colloid Interf. Sci. 16, 63–78 (1982).

    CAS  Article  Google Scholar 

  6. 6

    Peschel, G., Belouschek, P., Muller, M. M., Muller, M. R. & Konig, R. Colloid Polym. Sci. 260, 444–451 (1982).

    CAS  Article  Google Scholar 

  7. 7

    Israelachvili, J. N. & Adams, G. E. JCS Faraday Trans. I 74, 975–1001 (1978).

    CAS  Article  Google Scholar 

  8. 8

    Horn, R. G. & Israelachvili, J. N. Chem. Phys. Lett. 71, 192–194 (1980).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Pashley, R. M. J. Colloid Interf. Sci. 83, 531–546 (1981).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Pashley, R. M., McGuiggan, P. M., Ninham, B. W. & Evans, D. F. Science 229, 1088–1089 (1985).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ottewill, R. H. Concentrated Dispersions in Colloid Dispersions Ch. 9 (ed. Goodwin, J. W.) (Royal Society of Chemistry, London, 1982).

    Google Scholar 

  12. 12

    Ellmelech, M. JCS Faraday Trans. I 86, 1623–1624 (1990). Zhenge, X. & Yoon, R. J. Colloid Interf. Sci. 134, 427–434 (1990).

    Article  Google Scholar 

  13. 13

    Brown, M. A. & Staples, E. J. Langmuir 6, 1260–1265 (1990). Prieve, D. C. & Freij, N. A. Langmuir 6, 396–403 (1990).

    CAS  Article  Google Scholar 

  14. 14

    Binnig, G. & Rohrer, H. Helv. Phys. Acta 55, 726–735 (1982).

    CAS  Google Scholar 

  15. 15

    Binnig, G., Quate, C. F. & Gerber, C. Phys. Rev. Lett. 56, 930–933 (1986).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Martin, Y., Williams, C. & Wickramasinghe, H. J. appl. Phys. 61, 4223–4229 (1987).

    Article  Google Scholar 

  17. 17

    Burnham, N. A. & Colten, R. J. J. Vac. Sci. Technol. A7, 2906–2913 (1989).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Ducker, W. A. & Cook, R. F. Appl. Phys. Lett. 56, 2048–2410 (1990).

    Article  Google Scholar 

  19. 19

    Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R. & Quate, C. F. Appl. Phys. Lett. 54, 2691–2653 (1989).

    ADS  Article  Google Scholar 

  20. 20

    Wiese, G. R., James, R. O. & Healy, T. W. Disc. Faraday Soc. 52, 302–311 (1975).

    Article  Google Scholar 

  21. 21

    Chan, D. Y. C. & Horn, R. G. J. chem. Phys. 83, 5311–5324 (1990).

    ADS  Article  Google Scholar 

  22. 22

    Parker, J. L., Christenson, H. K. & Ninham, B. W. Rev. sci. Instrum. 60, 3135–3138 (1989).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Meyer, G. & Amer, N. M. Appl. Phys. Lett. 53, 1045–1047 (1988).

    ADS  Article  Google Scholar 

  24. 24

    Derjaguin, B. V. Kolloid. Zh. 69, 155–164 (1934).

    Article  Google Scholar 

  25. 25

    Hunter, R. J. Foundations of Colloid Science, 222 (Clarendon, Oxford, 1987).

    Google Scholar 

  26. 26

    Chan, D. Y. C., Pashley, R. M. & White, L. R. J. Coll. Inter. Sci. 77, 283 (1980).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ducker, W., Senden, T. & Pashley, R. Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991). https://doi.org/10.1038/353239a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing