Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Double cones as a basis for a new type of polarization vision in vertebrates

Abstract

MANY invertebrates1–4 and vertebrates5–14 are sensitive to the polarization of light. The biophysical basis of invertebrate polarization sensitivity is an intrinsic dichroism, the alignment of chromophores along the photoreceptor microvilli3. But such dichroism to axially propagating light is not present in vertebrate photoreceptors, whose chromophores are free to rotate in the plane of the outer-segment disc membranes, and a biophysical mechanism responsible for vertebrate polarization sensitivity has not been established. We hypothesize that the roughly elliptical cross-sectioned double-cone inner segment acts as a birefringent, polarization-sensitive dielectric waveguide, and that the double cone mosaic generates a 'polarization contrast' neural image. Here we confirm three predictions derived from these hypotheses: (1) 90° periodicity for polarization sensitivity; (2) polarization sensitivity maxima corresponding to the absolute orientation of the axes of the double-cone inner-segment cross-sections; and (3) action spectrum for polarization sensitivity corresponding to the absorption spectrum of the double cones. We also present evidence for a polarization-opponent neural encoding in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von Frisch, K. Experientia 4, 142–148 (1949).

    Article  Google Scholar 

  2. Menzel, R. in Light as an Ecological Factor (eds Evans, G. C., Bainbridge, R. & Rackham, O.) 289–303, (Blackwell, Oxford, 1975).

    Google Scholar 

  3. Wehner, R. Scient. Am. 235, 106–114 (1976).

    Article  CAS  Google Scholar 

  4. Wehner, R. Trans Neurosci. 12, 353–359 (1989).

    CAS  Google Scholar 

  5. Lythgoe, J. N. & Hemmings, C. C. Nature 213, 893–894 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Waterman, T. H. & Forward, R. B. Jr Nature 228, 85–87 (1970).

    Article  ADS  CAS  Google Scholar 

  7. Taylor, D. H. & Adler, K. Science 181, 285–287 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Waterman, T. H. in Handbook of Sensory Physiology Vol. 7/6B (ed. Autrum, H.) 81–469 (Springer, Berlin, 1981).

    Google Scholar 

  9. Able, K. Nature 299, 550–551 (1982).

    Article  ADS  Google Scholar 

  10. Brines, M. L. & Gould, J. L. J. exp. Biol. 96, 69–91 (1982).

    Google Scholar 

  11. Adler, K. & Phillips, J. B. J. comp. Physiol. A 156, 547–552 (1985).

    Article  Google Scholar 

  12. Hawryshyn, C. W. & McFarland, W. N. J. comp. Physiol. A 160, 459–465 (1987).

    Article  Google Scholar 

  13. Helbig, A. J. & Wiltschko, W. Naturwissenschaften 76, 227–229 (1989).

    Article  ADS  Google Scholar 

  14. Waldvogel, J. Am. Scient. 78, 342–353 (1980).

    ADS  Google Scholar 

  15. Snyder, A. W. & Menzel, R. Photoreceptor Optics (Springer, Berlin, 1975).

    Book  Google Scholar 

  16. Engstrom, K. Acta zool. 44, 179–243 (1963).

    Article  Google Scholar 

  17. Ali, M. A. & Anctil, M. Retinas of Fishes: An Atlas. (Springer, Berlin, 1976).

    Book  Google Scholar 

  18. Adams, M. J., Payne, D. N. & Ragdale, C. M. Electron. Lett 15, 298–299 (1979).

    Article  Google Scholar 

  19. Lyall, A. H. Q. Jl. microsc. Sci. 98, 189–201 (1957).

    Google Scholar 

  20. Hibbard, E. Expl. Eye Res. 12, 175–180 (1971).

    Article  CAS  Google Scholar 

  21. Boehlert, G. W. Science 202, 309–311 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Kunz, Y. W. Experientia 36, 1371–1374 (1980).

    Article  CAS  Google Scholar 

  23. Dearry, A. & Barlow, R. B. Jr J. gen. Physiol. 89, 745–770 (1987).

    Article  CAS  Google Scholar 

  24. Waterman, T. H. in Light as an Ecological Factor (eds Evans, G. C., Bainbridge, R. & Rackham, O.) 305–335 (Blackwell, Oxford, 1975).

    Google Scholar 

  25. Thornton, J. E. & Pugh, E. N. Jr Science 219, 191–193 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Easter, S. S. Jr in Vision in Fishes (ed. Ali, M. A.) 609–617 (Plenum, New York, 1975).

    Book  Google Scholar 

  27. Northmore, D. P. M. & Yager, D. in Vision in Fishes (ed. Ali, M. A.) 689–704 (Plenum, New York, 1975).

    Book  Google Scholar 

  28. Powers, M. K. & Easter, S. S. Jr Vision Res. 18, 1137–1147 (1978).

    Article  CAS  Google Scholar 

  29. Aalto, E. & Smeds, S. Med. biol. Engng Comp. 23, 111–112 (1985).

    Google Scholar 

  30. Charman, W. N. & Tucker, J. Vision Res 13, 1–8 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, D., Pugh, E. Double cones as a basis for a new type of polarization vision in vertebrates. Nature 353, 161–164 (1991). https://doi.org/10.1038/353161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing