Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle

Abstract

THE processes that regulate the cycling of oceanic dissolved organic carbon (DOC), one of the largest carbon reservoirs on the Earth's surface1, are largely unknown. DOC residues in the deep sea, below 500 m, seem to be composed mainly of biologically refractory compounds2–10 such as humic substances11. The average apparent 14C age of this refractory DOC is >6,000 yr in the deep Pacific2, suggesting that its rate of turnover is slow, but the pathways and rates responsible for this apparent slow turnover are unknown. Several studies have shown that aquatic humic substances are photochemically degraded by sunlight into biologically labile and/or volatile organic compounds12–14 and carbon monoxide15,16. Here we present new data which suggest that this photochemical degradation pathway is the rate-limiting step for the removal of a large fraction of oceanic DOC. This rate will increase with increasing flux of solar ultraviolet-B radiation. We estimate the oceanic residence time of biologically refractory, photochemically reactive DOC to be 500–2,100 yr, which is less than its average apparent 14C age. The injection of 'old carbon' from sediments into the deep sea may explain this discrepancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mopper, K. & Degens, E. T. in The Global Carbon Cycle (eds Bolin, B., Degens, E. T., Kempe, S. & Ketner, P.) 293–316 (Wiley, New York, 1979).

    Google Scholar 

  2. Williams, P. M. & Druffel, E. R. M. Nature 330, 246–248 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Menzel, D. W. & Ryther, J. H. Deep-Sea Res. 15, 327–337 (1968).

    Google Scholar 

  4. Barber, R. T. Nature 220, 274–275 (1968).

    Article  ADS  CAS  Google Scholar 

  5. Craig, H. J. Geophys. Res. 76, 5078–5086 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Williams, P. M. & Carlucci, A. F. Nature 262, 810–811 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Toggweiler, J. R. Nature 334, 468 (1988).

    Article  ADS  Google Scholar 

  8. Williams, P. M. & Druffel, E. R. M. Oceanography 1, 14–17 (1988).

    Article  Google Scholar 

  9. Toggweiler, J. R. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetecek, V. S. & Wefer, G.) 65–83 (Wiley, New York, 1989).

    Google Scholar 

  10. Druffel, E. R. M., Williams, P. M. & Suzuki, Y. Geophys. Res. Lett. 16, 991–994 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Malcolm, R. L. Analyt. Chim. Acta 232, 19–30 (1990).

    Article  CAS  Google Scholar 

  12. Kieber, D. J., McDaniel, J. & Mopper, K. Nature 341, 637–639 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Geller, A. Limnol. Oceanogr. 31, 755–764 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Kieber, R. J., Zhou, X. & Mopper, K. Limnol. Oceanogr. 35, 1503–1515 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Redden, G. D. thesis, Oregon State Univ. (1983).

  16. Valentine, R. L. & Zepp, R. G. EOS 71, 1236 (1990); Abstr. 201st National Meeting Am. chem. Soc. Div. Envir. Chem. 524–527 (American Chemical Society, 1991).

    Google Scholar 

  17. Sugimura, Y. & Suzuki, Y. Mar. Chem. 24, 105–131 (1988).

    Article  CAS  Google Scholar 

  18. Suzuki, Y. & Tanoue, E. in Ocean Margin Processes in Global Change (eds Mantoura, R. F. C., Martin, J. M. & Wollast, R.) 18–23 (Dahlem Workshop, Wiley, Berlin, 1991).

    Google Scholar 

  19. Koike, I., Hara, S., Terauchi, K. & Kogure, K. Nature 345, 242–244 (1990).

    Article  ADS  Google Scholar 

  20. Toggweiler, J. R. Nature 345, 203–204 (1990).

    Article  ADS  Google Scholar 

  21. Mopper, K. & Zhou, X. Science 250, 661–664 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Zafiriou, O. C., Joussot-Dubien, J., Zepp, R. G. & Zika, R. G. Envir. Sci. Techn. 18, 358A–371A (1984).

    Article  ADS  CAS  Google Scholar 

  23. Kieber, R. J. & Mopper, K. Envir. Sci. Technol. 24, 1477–1481 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Mopper, K. & Stahovec, W. L. Mar. Chem. 19, 305–321 (1986).

    Article  CAS  Google Scholar 

  25. Kieber, D. J. & Mopper, K. Mar. Chem. 21, 135–149 (1987).

    Article  CAS  Google Scholar 

  26. Butler, J. H., Pequegnat, J. E., Gordon, L. I. & Jones, R. D. Estuar. Coast. Shelf Sci. 27, 181–203 (1983).

    Article  ADS  Google Scholar 

  27. Jones, R. D. Deep-Sea Res. 38, 625–635 (1991).

    Article  ADS  CAS  Google Scholar 

  28. De Haan, H. & De Boer, T. Water Res. 21, 731–734 (1987); Stewart, A. J. & Wetzel, R. G. Limnol. Oceanogr. 25, 559–564 (1980).

    Article  CAS  Google Scholar 

  29. Chen, R. F. & Bada, J. L. Geophys. Res. Lett. 16, 687–690 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Blough, N. V. & Zepp, R. G. (eds) Effects of Solar Ultraviolet Radiation of Biogeochemical Dynamics in Aquatic Environments (Woods Hole Oceanographic Institution Techn. Rep. 90–09, Massachusetts, 1990).

  31. Kouassi, A. M., Zika, R. G. & Plane, J. M. C. Neth. J. Sea Res. 27, 33–41 (1990).

    Article  Google Scholar 

  32. Baker, K. S., Smith, R. C. & Green, A. E. S. in The Role of Solar Ultraviolet Radiation in Marine Ecosystems (ed. Calkins, J.) 79–91 (Plenum, New York. 1982).

    Book  Google Scholar 

  33. Zafiriou, O. C. & True, M. B. Mar. Chem. 8, 33–42 (1979).

    Article  CAS  Google Scholar 

  34. Dahlback, A., Henriksen, T., Larsen, S. H. H. & Stamnes, K. Photochem. Photobiol. 49, 621 (1989).

    Article  CAS  Google Scholar 

  35. Cutchis, P. Science 184, 13–19 (1974).

    Article  ADS  CAS  Google Scholar 

  36. Zepp, R. G., Hoigné, J. & Bader, H. Envir. Sci. Technol. 21, 443–450 (1987).

    Article  ADS  CAS  Google Scholar 

  37. Zepp, R. G. & Cline, D. M. Envir. Sci. Technol. 11, 359–366 (1977).

    Article  ADS  CAS  Google Scholar 

  38. Spinhirne, J. D. & Green, A. E. S. Atmos. Envir. 12, 2449–2454 (1978).

    Article  Google Scholar 

  39. Smith, R. C. & Baker, K. S. Oceanography 2, 4–10 (1989).

    Article  Google Scholar 

  40. Stamnes, K., Slusser, J., Bowen, M., Booth, C. & Lucas, T. Geophys. Res. Lett. 17, 2181–2184 (1990).

    Article  ADS  Google Scholar 

  41. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigo, New York, 1982).

    Google Scholar 

  42. Stuiver, M., Quay, P. D. & Ostlund, H. G. Science 219, 849–854 (1983).

    Article  ADS  CAS  Google Scholar 

  43. Mathews, R. W. Radiat. Res. 83, 27–41 (1980).

    Article  ADS  Google Scholar 

  44. Wang, W. H., Beyerle-Pfnür, R. & Lay, J. P. Chemosphere 17, 1197–1204 (1988).

    Article  ADS  CAS  Google Scholar 

  45. Williams, P. M., Carlucci, A. F. & Olson, R. Oceanol. Acta 3, 471–476 (1980).

    Google Scholar 

  46. Starikova, N. D. Oceanol. 10, 796–807 (1970).

    Google Scholar 

  47. Devol, A. H. & Ahmed, S. I. Nature 291, 407–408 (1981).

    Article  ADS  CAS  Google Scholar 

  48. Mopper, K. in Proc. MarChem'91 Workshop (Office of Naval Research, Steamboat Springs, Colorado, 1991).

    Google Scholar 

  49. Mopper, K. & Park, Y. C. in Background Papers Workshop on Measurement of Dissolved Organic Carbon and Nitrogen in Natural Waters (NSF/NOAA/DOE, Seattle, 1991).

    Google Scholar 

  50. Meyers-Schulte, K. J. & Hedges, J. I. Nature 321, 61–63 (1986).

    Article  ADS  CAS  Google Scholar 

  51. Hedges, J. I. Mar. Chem. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mopper, K., Zhou, X., Kieber, R. et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353, 60–62 (1991). https://doi.org/10.1038/353060a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353060a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing