Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicing

Abstract

REMOVAL of introns from eukaryotic nuclear messenger RNA precursors is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of four small nuclear ribonu-cleoprotein particles (Ul, U2, U5, and U4/U6 snRNPs) and auxiliary protein factors1,2. We have begun a genetic analysis of mammalian U2 snRNA by making second-site mutations in a suppressor U2 snRNA3. Here we find that several mutations in the 5′ end of U2 (nucleotides 3–8) are deleterious and that one of these can be rescued by compensatory base changes in the 3′ end of U6 (nucleotides 92–95). The results demonstrate genetically that the base-pairing interaction between U2 (nucleotides 37–11) and U6 snRNA (nucleotides 87–95), originally proposed on the basis of psoralen photocrosslinking experiments4, can influence the efficiency of mRNA splicing in mammals. The U2/U6 interac-tion in yeast, however, is fairly tolerant to mutation5 (D. J. Field and J. D. Friesen, personal communication), emphasizing the potential for facultative RNA interactions within the spliceosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steitz, J. A. et al. in Structure and Function of Major and Minor snRNPs (ed. Birnsteil, M. L.) 115–154 (Springer, Heidelberg, 1988).

    Google Scholar 

  2. Lührmann, R. in Structure and Function of Major and Minor snRNPs (ed. Birnsteil, M. L.) 71–99 (Springer, Heidelberg, 1988).

    Google Scholar 

  3. Zhuang, Y. & Weiner, A. M. Genes Dev. 3, 1545–1552 (1989).

    Article  CAS  Google Scholar 

  4. Hausner, T.-P., Giglio, L. M. & Weiner, A. M. Genes Dev. 4, 2146–2156 (1990).

    Article  CAS  Google Scholar 

  5. Shuster, E. O. & Guthrie, C. Nature 345, 270–273 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Wu, J. & Manley, J. L. Genes Dev. 3, 1553–1561 (1989).

    Article  CAS  Google Scholar 

  7. Yuo, C.-Y. & Weiner, A. M. Genes Dev. 3, 697–707 (1989).

    Article  CAS  Google Scholar 

  8. Wu, J. & Manley, J. L. Nature 352, 818–821 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M., & Kim, S.-H. J. molec. Biol. 123, 607–630 (1978).

    Article  CAS  Google Scholar 

  10. Black, D. L., Chabot, B. & Steitz, J. A. Cell 42, 737–750 (1985).

    Article  CAS  Google Scholar 

  11. Krainer, A. R. & Maniatis, T. Cell 42, 725–736 (1985).

    Article  CAS  Google Scholar 

  12. Frendewey, D., Krämer, A. & Keller, W. Cold Spring Harbor Symp. quant. Biol. 52, 287–298 (1987).

    Article  CAS  Google Scholar 

  13. Pan, Z.-Q. & Prives, C. Genes Dev. 3, 1887–1898 (1989).

    Article  CAS  Google Scholar 

  14. Lamond, A. I., Sproat, B., Ryder, U. & Hamm, J. Cell 58, 383–390 (1989).

    Article  CAS  Google Scholar 

  15. Hamm, J., Dathan, N. A. & Mattaj, I. W. Cell 59, 159–169 (1989).

    Article  CAS  Google Scholar 

  16. Blencowe, B. J., Sproat, B. S., Ryder, U., Barabino, S. & Lamond, A. I. Cell 59, 531–539 (1989).

    Article  CAS  Google Scholar 

  17. Vankan, P., McGuigan, C. & Mattaj, I. W. EMBO J. 9, 3397–3404 (1990).

    Article  CAS  Google Scholar 

  18. Fabrizio, P., McPheeters, D. S. & Abelson, J. Genes Dev. 3, 2137–2150 (1989).

    Article  CAS  Google Scholar 

  19. Fabrizio, P. & Abelson, J. Science 250, 404–409 (1991).

    Article  ADS  Google Scholar 

  20. Madhani, H. D., Bordonne, R. & Guthrie, C. Genes Dev. 4, 2264–2277 (1991).

    Article  Google Scholar 

  21. Guthrie, C. & Patterson, B. A. Rev. Genet. 22, 387–419 (1988).

    Article  CAS  Google Scholar 

  22. Company, M., Arenas, J. & Abelson, J. Nature 349, 487–493 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Schwer, B. & Guthrie, C. Nature 349, 494–499 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Pikielny, C. W., Rymond, B. C. & Rosbash, M. Nature 324, 341–345 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Cheng, C.-C. & Abelson, J. Genes Dev. 1, 1014–1027 (1987).

    Article  CAS  Google Scholar 

  26. Lamond, A., Konarska, M. M., Grabowski, P. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 85, 411–415 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Kunkel, G. R. & Pederson, T. Genes Dev. 2, 196–204 (1988).

    Article  CAS  Google Scholar 

  29. Santa Lucia, J., Kierzek, R. & Turner, D. H. Biochemistry (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, B., Weiner, A. Genetic evidence for base pairing between U2 and U6 snRNA in mammalian mRNA splicing. Nature 352, 821–824 (1991). https://doi.org/10.1038/352821a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352821a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing