Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Requirement for mast cell growth factor for primordial germ cell survival in culture

Abstract

MAST-CELL growth factor (MGF) is encoded by the murine steel (SI) locus and is a ligand for the tyrosine kinase receptor protein encoded by the proto-oncogene c-kit at the murine dominant white spotting ( W) locus. Mutations at both these loci affect mast cells, primordial germ cells (PGCs), haemopoietic stem cells and melanocytes. In many SI and W mutants, the rapid proliferation of PGC that normally occurs between day 7 and 13.5 of embryonic development fails to occur. As c-kit is expressed in PGCs1,2 while MGF is expressed in the surrounding mesenchyme2,3, MGF might promote the proliferation of PGCs. Here we report that MGF is essential for PGC survival in culture, but does not stimulate PGC proliferation. Moreover, whereas both the transmembrane and soluble proteolytic cleavage forms of MGF stimulate mast-cell proliferation, soluble MGF has a relatively limited ability to support survival of PGCs in culture, thus explaining the sterility in mice carrying the steel-dickie (Sld) mutation, which encodes only a soluble form of MGF, and providing a functional role for a transmembrane growth factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Orr, U. A. et al. Development 109, 911–923 (1990).

    Google Scholar 

  2. Keshet, E. et al. EMBO J. (in the press).

  3. Matsui, Y., Zsebo, K. M. & Hogan, B. L. Nature 347, 667–669 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Donovan, P. J., Stott, D., Cairns, L. A., Heasman, J. & Wylie, C. C. Cell 44, 831–838 (1986).

    Article  CAS  Google Scholar 

  5. Godin, I., Wylie, C. & Heasman, J. Development 108, 357–363 (1990).

    CAS  Google Scholar 

  6. Cairns, L. thesis, Univ. Lond. (1987).

  7. Godin, I. et al. Nature 352, 807–809 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Copeland, N. G. et al. Cell 63, 175–183 (1990).

    Article  CAS  Google Scholar 

  9. Zsebo, K. M. et al. Cell 63, 213–224 (1990).

    Article  CAS  Google Scholar 

  10. Huang, E. et al. Cell 63, 225–233 (1990).

    Article  CAS  Google Scholar 

  11. Flanagan, J. G., Chan, D. C. & Leder, P. Cell 64, 1025–1035 (1991).

    Article  CAS  Google Scholar 

  12. Brannan, C. I. et al. Proc. natn. Acad. Sci. U.S.A. 88, 4671–4674 (1991).

    Article  ADS  CAS  Google Scholar 

  13. McCoshen, J. A. & McCallion, D. J. Experientia 31, 589–590 (1975).

    Article  CAS  Google Scholar 

  14. Williams, D. E. et al. Cell 63, 167–174 (1990).

    Article  CAS  Google Scholar 

  15. Anderson, D. M. et al. Cell 63, 235–243 (1990).

    Article  CAS  Google Scholar 

  16. Zsebo, K. M. et al. Cell 63, 195–201 (1990).

    Article  CAS  Google Scholar 

  17. Hanks, S. K., Quinn, A. M. & Hunter, T. Science 241, 42–52 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Pawson, T. & Bernstein, A. Trends Genet 6, 350–356 (1990).

    Article  CAS  Google Scholar 

  19. Yarden, Y. & Ullrich, A. A. Rev. Biochem. 57, 443–478 (1988).

    Article  CAS  Google Scholar 

  20. Nocka, K., Buck, J., Levi, E. & Besmer, P. EMBO J. 9, 3287–3294 (1990).

    Article  CAS  Google Scholar 

  21. Martin, F. H. et al. Cell 63, 203–211 (1990).

    Article  CAS  Google Scholar 

  22. Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  23. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Dugaiczyk, A. et al. Biochemistry 22, 1605–1613 (1983).

    Article  CAS  Google Scholar 

  25. Graham, F. L. & Eb, A.v.d. Virology 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  26. Boswell, H. S., Albrecht, P. R., Shupe, R. E., Williams, D. E. & Burgess, J. Expl Hemato. 15, 46–53 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolci, S., Williams, D., Ernst, M. et al. Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352, 809–811 (1991). https://doi.org/10.1038/352809a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352809a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing