Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle

Abstract

THE mitochondrial genome of Trypanosoma brucei is organized in the form of a complex catenated network of circular DNA molecules. This mass of DNA, known as the kinetoplast, is present at a unique site in the single mitochondrion, and is replicated in a discrete, periodic S phase of the cell cycle. The single-copy nature of the kinetoplast suggests that there is a mechanism ensuring segregation fidelity of replicated copies to each daughter cell. Historically, speculation regarding the nature of this mechanism has often attributed significance to the close association between the kinetoplast and the flagellum basal body. We provide here direct evidence that this mitochondrial DNA complex is indeed linked to the basal body, and segregation of the kinetoplast DNA is dependent on a microtubule-mediated separation of the new and old flagellar basal bodies during the cell cycle. This unique system may represent the remnants of an evolutionary archaic mechanism for genome segregation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Vickerman, K. Trans. R. Soc. trop. Med. Hyg. 56, 487–495 (1962).

    CAS  Article  Google Scholar 

  2. 2

    Robertson, M. Phil. Trans. R. Soc. B203, 161–184 (1913).

    Article  Google Scholar 

  3. 3

    Simpson, L. J. Protozool. 15, 132–136 (1968).

    CAS  Article  Google Scholar 

  4. 4

    Molyneux, D. H. Parasitology 59, 55–66 (1969).

    CAS  Article  Google Scholar 

  5. 5

    Lewis, D. H. J. Protozool. 22, 344–352 (1975).

    Article  Google Scholar 

  6. 6

    Steinert, M., Van Assel, S. & Steinert, G. in Biochemistry of Parasites and Host-Parasite Relationships (ed. Van den Bossche, H.) 193–202 (Elsevier/North-Holland Biomedical, Amsterdam, 1976).

    Google Scholar 

  7. 7

    Souto-Padron, T., De Souza, W. & Heuser, J. E. J. Cell Sci. 69, 167–178 (1984).

    CAS  PubMed  Google Scholar 

  8. 8

    Hiruki, T. Zentbl. Bakt. Mikrobiol. Hyg. 264, 392–398 (1987).

    CAS  Google Scholar 

  9. 9

    Woods, A. et al. J. Cell Sci. 93, 491–500 (1989).

    PubMed  Google Scholar 

  10. 10

    Sherwin, T. & Gull, K. Phil. Trans. R. Soc. B323, 573–588 (1989).

    CAS  Article  Google Scholar 

  11. 11

    Chow, K. C., Macdonald, T. L. & Ross, W. E. Molec. Pharmacol. 34, 467–473 (1988).

    CAS  Google Scholar 

  12. 12

    Patel, S. Austin, C. A. & Fisher, L. M. Anticancer Drug Des. 5, 149–157 (1990).

    CAS  PubMed  Google Scholar 

  13. 13

    Shapiro, T. A. & Englund, P. T. Proc. natn. Acad. Sci. U.S.A. 87, 950–954 (1990).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Ootso, K. et al. Cancer Res. 40, 1707–1717 (1980).

    Google Scholar 

  15. 15

    Brun, R. & Schonenberger, M. Acta trop. 36, 289–292 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Sherwin, T., Schneider, A., Sasse, R., Seebeck, T. & Gull, K. J. Cell Biol. 104, 439–446 (1987).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Robinson, D., Gull, K. Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352, 731–733 (1991). https://doi.org/10.1038/352731a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing