Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger

Abstract

Na+/Ca2+ EXCHANGE is electrogenic and moves one net positive charge per cycle1,2. Although the cardiac exchanger has a three-to-one Na+/Ca2+ stoichiometry3, details of the reaction cycle are not well defined2,4–8. Here we associate Na+ translocation by the cardiac exchanger with positive charge movement in giant membrane patches from cardiac myocytes9,10 and oocytes expressing the cloned cardiac Na+/Ca2+ exchanger11. The charge movements are initiated by step increments of the cytoplasmic Na+ concentration in the absence of Ca2+. Giant patches from control oocytes lack both steady-state Na+/Ca2+ exchange current (INaCa) Na+-induced charge movements. Charge movements indicate about 400 exchangers per (μm2 in guinea-pig sarcolemma. Fully activated INaCa densities (20–30 μA cm–2) indicate maximum turnover rates of 5,000s−1. As has been predicted for consecutive exchange models4–7, the apparent ion affinities of steady stateINaCa increase as the counterion concentrations are decreased. Consistent with an electroneutral Ca2+ translocation, we find that voltage dependence of INaCa in both directions is lost as Ca2+ concentration is decreased. The principal electrogenic step seems to be at the extracellular end of the Na+ translocation pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Allen, T. J. A., Noble D. & Reuter, H. (eds) Sodium-Calcium Exchange (Oxford University Press, Oxford, 1989).

  2. Lagnado, L. & McNaughton, P. A. J. Membrane Biol. 113, 177–191 (1990).

    Article  CAS  Google Scholar 

  3. Crespo, L. M., Grantham, C. J. & Cannell, M. B. Nature 345, 618–621 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Läuger, P. J. J. Membrane Biol. 99, 1–12 (1987).

    Article  Google Scholar 

  5. Hilgemann, D. W. Prog. Biophys. molec. Biol. 51, 1–45 (1988).

    Article  CAS  Google Scholar 

  6. Li, J. & Kimura, J. J. gen. Physiol. 96, 777–788 (1990).

    Article  CAS  Google Scholar 

  7. Khananshvili, D. Biochemistry 29, 2437–2442 (1990).

    Article  CAS  Google Scholar 

  8. Niggli, E. & Lederer, W. J. Nature 349, 621–724 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Hilgemann, D. W. Pflügers Arch. 415, 247–249 (1989).

    Article  CAS  Google Scholar 

  10. Hilgemann, D. W. Nature 344, 242–245 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Nicoll, D. A., Longoni, S. & Philipson, K. D. Science 250, 562–565 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Stürmer, W., Apell, H. J., Wuddel, L. & Läuger, P. J. Membrane Biol. 110, 67–86 (1989).

    Article  Google Scholar 

  13. Borlinghaus, R., Appell, H. J. & Läuger, P. J. Membrane Biol. 97, 161–178 (1987).

    Article  CAS  Google Scholar 

  14. Gadsby, D. C. & Nakao, M. J. gen Physiol. 94, 511–537 (1989).

    Article  CAS  Google Scholar 

  15. Nakao, M. & Gadsby D. C. J. gen. Physiol. 94, 539–565 (1989).

    Article  CAS  Google Scholar 

  16. Rakowski, R. F., Gadsby, D. C. & De Weer, P. J. J. gen. Physiol. 93, 903–941 (1989).

    Article  CAS  Google Scholar 

  17. Goldshlegger, R., Karlish, S. J. D., Raphaeli, A. & Stein, W. D. J. Physiol. 387, 331–355 (1987).

    Article  CAS  Google Scholar 

  18. Forbush, B. III Proc. natn. Acad. Sci. U.S.A. 81, 5310–5314 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Fendler, K., Grell, E. & Bamberg, E. FEBS Lett. 224, 83–88 (1987).

    Article  CAS  Google Scholar 

  20. Nakao, M. & Gadsby, D. C. Nature 3233, 628–630 (1986).

    Article  ADS  Google Scholar 

  21. Li, Z. et al. J. biol. Chem. 266, 1014–1020 (1991).

    CAS  PubMed  Google Scholar 

  22. Lagnado, L., Cervetto, L. & McNaughton, P. A. Proc. natn. Acad. Sci. U.S.A. 85, 4548–4552 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Allen, T. J. A. & Baker, P. F. J. Physiol. 378, 77–96 (1986).

    Article  CAS  Google Scholar 

  24. Glynn, I. M. & Karlish, S. A. Rev. Physiol 37, 13–55 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilgemann, D., Nicoll, D. & Philipson, K. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 352, 715–718 (1991). https://doi.org/10.1038/352715a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352715a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing