Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Off-axis orientation of the electronic transition moment for a linear conjugated polyene

Abstract

IN many applications of conjugated polyenes for nonlinear optoelectronics and as probes of biophysical systems, the orientation of the electronic transition dipole moment relative to the long axis of the chains is an important quantity. Simple models predict that the transition moment lies closely along the chain axis1,2 or at an angle of about 30° to this axis3, but the difficulty of preparing perfectly oriented samples has made these predictions hard to test. Here we report the results of polarized single crystal spectroscopy of a linear conjugated tetraene in the highly aligned configuration made possible by incorporating these molecules as guests in the channels of urea crystals. The angular dependence of the absorption spectrum indicates that the transition moment lies at an angle of 15° to the chain axis. Molecular-orbital calculations can reproduce this value when they include the effects of electron correlation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bayliss, N. S. Quart. Rev. Chem. Soc. 6, 319 (1952).

    Article  CAS  Google Scholar 

  2. Salem, L. The Molecular Orbital Theory of Conjugated Systems (Benjamin, New York, 1966).

    Google Scholar 

  3. Simpson, W. T. Theories of Electrons in Molecules (Prentice-Hall, Englewood Cliffs, 1962); J. Am. chem. Soc. 73, 5359 (1951); 77, 6164 (1955); 78, 3585 (1956).

    Google Scholar 

  4. Nature 243, 7 (1973).

  5. Hausser, K. W., Kuhn, R., Smakuia, A. & Kreuchen, K. H. Z. phys. Chem. B29, 363 (1935).

    Google Scholar 

  6. Sklar, A. L. J. chem. Phys. 5, 669 (1937).

    Article  ADS  CAS  Google Scholar 

  7. Kuhn, H. J. chem. Phys. 17, 1198 (1949).

    Article  ADS  CAS  Google Scholar 

  8. Murrell, J. N. Theory of the Electronic Spectra of Organic Molecules (Wiley, New York, 1966).

    Google Scholar 

  9. Hudson, B. & Kohler, B. E. Ann. Rev. phys. Chem. 25, 437–460 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Hudson, B., Kohler, B. E. & Schulten, K. Linear Polyene Electronic Structure and Potential Surfaces, Excited States Vol. 6, (ed. Lim, E. C.) 1–95 (Academic, New York, 1982).

    Google Scholar 

  11. Mulliken, R. S. J. chem. Phys. 7, 364 (1939).

    Article  ADS  CAS  Google Scholar 

  12. Lennard-Jones, J. E. Proc. R. Soc. Lond. A158, 280 (1937).

    ADS  CAS  Google Scholar 

  13. Bredas, J. L. & Chance, R. R. Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, NATO ASI Ser. Vol. 182 (Kluwer, Dordrecht, 1989).

    Google Scholar 

  14. Hann, R. A. & Bloor, D. Organic Materials for Nonlinear Optics (Royal Society of Chemistry, London, 1989).

    Google Scholar 

  15. Kobayashi, T. Nonlinear Optics of Organics and Semiconductors (Springer, Berlin, 1988).

    Google Scholar 

  16. Parkhurst, L. J. & Anex, B. G. J. chem. Phys. 45, 862 (1966).

    Article  ADS  CAS  Google Scholar 

  17. Anex, B. G. Molec. Crystals 1, 1 (1966).

    Article  CAS  Google Scholar 

  18. Pfanstiel, J. F., Champagne, B. B., Majewski, W. A., Plusquelllic, D. F. & Pratt, D. W. Science 245, 736 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Redlick, O. Gable, C. M. Dunlop, A. K. & Millar, R. W. J. Am. chem. Soc. 72, 4153 (1950).

    Article  Google Scholar 

  20. Smith, A. E. Acta Crystallogr. 5, 224 (1952).

    Article  CAS  Google Scholar 

  21. Schlenk, W. & Schlenk, W. Jr Ann. Chem. Leipzig 565, 204 (1949).

    Article  CAS  Google Scholar 

  22. Takemoto, K. & Sonoda, N. in Inclusion Compounds, Vol. 2 (eds Atwood, J. L., Davies, J. E. D. & Mac Nicol, D. D.) 47–55 (Academic, London, 1984).

    Google Scholar 

  23. Parsonage, N. G. & Staveley, L. A. K. Disorder in Crystals (Oxford University Press, 1978).

    Google Scholar 

  24. Bhatnager, V. M. Clathrate Compounds, 1–15 (Chand, New Delhi, 1960).

    Google Scholar 

  25. Fetterely, L. C. in Non-stoichiometric Compounds (ed. Mandelcorn, L.) 497–530 (Academic, New York, 1964).

    Google Scholar 

  26. Davies, J. E. D. Molec. Spectrosc. 5, 60 (1977).

    Article  ADS  Google Scholar 

  27. Shang, Q.-Y. thesis, Univ. of Oregon (1990).

  28. Sklar, L. A., Hudson, B. & Simoni, R. D. Proc. Natl Acad. Sci. USA 72, 1649–1653 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Hudson, B. & Cavalier, S. A. in Spectroscopic Membrane Probes (ed. Loew, L.) 43–62 (CRC Press, Boca Raton, 1988).

    Google Scholar 

  30. Dou, X. thesis, Univ. Oregon (1991).

  31. Myers, A. B. & Birge, R. R. J. chem. Phys. 73, 5314 (1980).

    Article  ADS  CAS  Google Scholar 

  32. Bottcher, C. J. F. Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

    MATH  Google Scholar 

  33. Platt, J. R. Free Electron Theory of Conjugated Molecules (Wiley, New York, 1964).

    Google Scholar 

  34. Kohler, B. E. J. chem. Phys. 93, 8 (1990).

    Google Scholar 

  35. Schulten, K. & Karplus, M. Chem. Phys. Lett. 14, 305 (1972).

    Article  ADS  CAS  Google Scholar 

  36. Ramasesha, S. & Soos, Z. G. J. chem. Phys. 80, 3278 (1984).

    Article  ADS  CAS  Google Scholar 

  37. Hayashi, S., Yabushita, S. & Immamura, A. Chem. Phys. Lett. 179, 405 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Qy., Dou, X. & Hudson, B. Off-axis orientation of the electronic transition moment for a linear conjugated polyene. Nature 352, 703–705 (1991). https://doi.org/10.1038/352703a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352703a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing