Letter | Published:

'Pseudo' domains in phage-encoded DNA methyltransferases

Naturevolume 352pages645648 (1991) | Download Citation

Subjects

Abstract

5-Cytosine-DNA-methyltransferases, which are found in many organisms ranging from bacteriophages to mammals, transfer a methyl group from S-adenosylmethionine to the carbon-5 of a cytosine residue in specific DNA target sequences1. Some phage-encoded methyltransferases methylate more than one sequence: these enzymes contain several independent target-recognizing domains each responsible for recognizing a different site. The amino-acid sequences of these multispecific methyltransferases reveal that some enzymes in addition carry domains that do not contribute to the enzymes" methylation potential, but strongly resemble previously identified target-recognizing domains. Here we show that introducing defined amino-acid alterations into these inactive domains endows these enzymes with additional methylation specificities. Gel retardation analysis demonstrates that these novel methylation specificities correlate with the acquisition of additional DNA-binding potential of the proteins.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Razin, A., Cedar, H. & Riggs, A. D., eds. DNA Methylation: Biochemistry and Biological Significance, Springer Verlag, Berlin, 1984.

  2. 2

    Lauster, R., Trautner, T. A. & Noyer-Weidner, M. J. molec. Biol. 206, 305–312 (1989).

  3. 3

    Pósfai, J., Bhagwat, A. S., Pósfai, G. & Roberts, R. J. Nucleic Acids Res. 17, 2421–2435 (1989).

  4. 4

    Ingrosso, D., Fowler, A. V., Bleibaum, J. & Clarke, S. J. biol. Chem. 264, 20131–20139 (1989).

  5. 5

    Wilke, K. et al. EMBO J. 7, 2601–2609 (1988).

  6. 6

    Behrens, B. et al. EMBO J. 6, 1137–1142 (1987).

  7. 7

    Balganesh, T. S. et al. EMBO J. 6, 3543–3549 (1987).

  8. 8

    Trautner, T. A., Balganesh, T. S. & Pawlek, B. Nucleic Acids Res. 16, 6649–6658 (1988).

  9. 9

    Lange, C., Noyer-Weidner, M., Trautner, T. A., Weiner, M. & Zahler, S. A. Gene 100, 213–218 (1991).

  10. 10

    Buhk, H.-J. et al. Gene 29, 51–61 (1984).

  11. 11

    Tran-Betcke, A., Behrens, B., Noyer-Weidner, M. & Trautner, T. A. Gene 42, 89–96 (1986).

  12. 12

    Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

  13. 13

    Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

  14. 14

    Furste, J. P. et al. Gene 48, 119–129 (1986).

  15. 15

    Sambrook, J., Fritsch, E. F. & Maniatis, T. (eds) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1989).

  16. 16

    Ratcliff, S. W. Mol. gen. Genet. 168, 165–172 (1979).

Download references

Author information

Affiliations

  1. Max-Planck-lnstitut für molekulare Genetik, Ihnestrasse 73, 1000, Berlin, 33, Germany

    • C. Lange
    • , A. Jugel
    • , J. Walter
    • , M. Noyer-Weidner
    •  & T. A. Trautner

Authors

  1. Search for C. Lange in:

  2. Search for A. Jugel in:

  3. Search for J. Walter in:

  4. Search for M. Noyer-Weidner in:

  5. Search for T. A. Trautner in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/352645a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.