Letter | Published:

Multiple nucleotide-binding sites in the sequence of dynein β heavy chain

Naturevolume 352pages640643 (1991) | Download Citation

Subjects

Abstract

AXONEMAL dyneins have two or three globular heads joined by flexible tails to a common base, with each head/tail unit consisting of a single heavy-chain polypeptide of relative molecular mass >400,000. The sizes of the components have been deduced by electron microscopy1–3. The isolated β heavy chain of sea urchin sperm flagella, which is immunologically identical to that of the embryo cilia (data not shown; ref. 4), is of particular interest as it retains the capability for microtubule translocation in vitro5,6. Limited proteolysis of the β heavy chain divides it into two fragments, A and B, which sediment separately at 12S and 6S, and possibly correspond to the head and tail domains of the molecule7. Dynein ATPase is the energy-transducing enzyme that generates the sliding movement between tubules that underlies the beating of cilia and flagella of eukaryotes, and possibly also other large intracellular movements8,9. Here we report that the deduced amino-acid sequence of the β heavy chain of axonemal dynein from embryos of the sea urchin Tripneustes gratilla has 4,466 residues and contains the consensus motifs for five nucleotide-binding sites. The probable hydrolytic ATP-binding site can be identified by its location close to or at the VI site of vanadate-mediated photo-cleavage10. The general features of the map of photocleavage and proteolytic peptides reported earlier have been confirmed, except that the map's polarity is reversed. The predicted secondary structure of the β heavy chain consists of an α/β-type pattern along its whole length. The two longest regions of potential a. helix, with unbroken heptad hydrophobic repeats 120 and 50 amino acids long, may be of functional importance. But dynein does not seem to contain an extended coiled-coil tail domain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Goodenough, U. W. & Heuser, J. J. molec. Biol. 180, 1083–1118 (1984).

  2. 2

    Sale, W. S., Goodenough, U. W. & Heuser, J. E. J. Cell Biol. 101, 1400–1412 (1985).

  3. 3

    Smith, E. F. & Sale, W. S. Cell Motil. Cytoskel. 18, 258–268 (1991).

  4. 4

    Ogawa, K. et al. Cell Motil. Cytoskel. 16, 58–67 (1990).

  5. 5

    Vale, R. D., Soll, D. R. & Gibbons, I. R. Cell 59, 915–925 (1989).

  6. 6

    Sale, W. S., & Fox, L. A. J. Cell Biol. 107, 1793–1798 (1988).

  7. 7

    Ow, R. A., Mocz, G., Tang, W.-J. Y. & Gibbons, I. R. J. biol. Chem. 262, 3409–3414 (1987).

  8. 8

    Vale, R. D. A. Rev. Cell Biol. 3, 347–378 (1987).

  9. 9

    Gibbons, I. R. J. biol. Chem. 263, 15837–15840 (1988).

  10. 10

    Gibbons, I. R. et al. J. biol. Chem. 262, 2780–2786 (1987).

  11. 11

    Mocz, G., Tang, W.-J. Y. & Gibbons, I. R. J. Cell Biol. 106, 1607–1614 (1988).

  12. 12

    Ogawa, K. Proc. Japan Acad. 67B, 27–31 (1991).

  13. 13

    Ogawa, K. Proc. Int. Echinoderm Cong. Tokyo (in the press).

  14. 14

    Foltz, K. Asai, D. J., Cell Motil. Cytoskel. 16, 33–46 (1990).

  15. 15

    Garber, A. T., Retief, J. D. & Dixon, G. H. EMBO J. 8, 1727–1734 (1989).

  16. 16

    Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. EMBO J. 1, 945–951 (1982).

  17. 17

    Cremo, C. R., Long, G. T. & Grammar, J. Biochemistry 29, 7982–7990 (1990).

  18. 18

    Cremo, C. R. Biophys. J. 59, 513 (1991).

  19. 19

    Gottesman, S., Clark, W. P. & Maurizi, M. R. J. biol. Chem. 265, 7886–7893 (1990).

  20. 20

    Hayashi, M. & Higashi-Fujimi, S. Biochemistry 11, 2977–2982 (1972).

  21. 21

    Mocz, G. & Gibbons, I. R. J. biol. Chem. 265, 2917–2922 (1990).

  22. 22

    Tang, W.-J. Y. & Gibbons, I. R. J. biol. Chem. 262, 17728–17734 (1987).

  23. 23

    King, S. M., Haley, B. E. & Witman, G. B. J. biol. Chem. 264, 10210–10218 (1989).

  24. 24

    Gascuel, O. & Golmard, J. L. CABIOS 4, 357–365 (1988).

  25. 25

    Mocz, G., Farias, J. & Gibbons, I. R. Biochemistry (in the press).

  26. 26

    McLachlan, A. D. & Karn, J. J. molec. Biol. 164, 605–626 (1983).

  27. 27

    Pearson, W. R. & Lipman, D. J. Proc. natn. Acad. Sci. U. S. A. 85, 2444–2448 (1988).

  28. 28

    Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Nature 347, 256–261 (1990).

  29. 29

    Warrick, H. M. & Spudich, J. A. A. Rev. Cell Biol. 3, 379–421 (1987).

  30. 30

    Yang, J. T., Laymon, R. A. & Goldstein, L. S. B. Cell 56, 879–889 (1989).

  31. 31

    Endow, S. A., Henikoff, S. & Soler-Niedziela, L. Nature 345, 81–83 (1990).

  32. 32

    McDonald, H. B. & Goldstein, L. S. B. Cell 61, 991–1000 (1990).

  33. 33

    Mocz, G. & Gibbons, I. R. Biochemistry 29, 4839–4843 (1990).

  34. 34

    Gibbons, I. R. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

Download references

Author information

Author notes

  1. David J. Asai: Department of Biological Science, Purdue University, West Lafayette, Indiana 47907, USA

Affiliations

  1. Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii, 96822, USA

    • I. R. Gibbons
    • , Barbara H. Gibbons
    • , Gabor Mocz
    •  & David J. Asai

Authors

  1. Search for I. R. Gibbons in:

  2. Search for Barbara H. Gibbons in:

  3. Search for Gabor Mocz in:

  4. Search for David J. Asai in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/352640a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.