Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High turnover rates of dissolved organic carbon during a spring phytoplankton bloom

Abstract

OCEANIC dissolved organic carbon (DOC) is one of the Earth's largest carbon reservoirs, but until recently its role in the carbon cycle has been neglected. New methodology1, however, has led to larger estimates of DOC concentrations and also to renewed interest in the biochemical lability of DOC2. Previous work found that the mean age of DOC in the surface ocean was > 1,000 years3. To examine the lability of DOC in greater detail, we have conducted experiments to estimate DOC turnover rates in the upper ocean. We directly observed rapid DOC turnover by bacterioplank-ton during the spring phytoplankton bloom in the North Atlantic ocean. Potential turnover rates, measured in 0.8-um filtered samples, ranged from 0.025 to 0.363 per day, and were consistent with bacterial biomass production and uptake of dissolved nitrogen (NH+4, NO-3 and urea). Our results indirectly suggest that cycling of dissolved organic nitrogen (DON) differs from that of DOC. The high estimates of DOC concentrations and turnover rates repeated here, if found to be general, would seem to demand changes in models4 of carbon cycling and of the ocean's role in buffering increases in atmospheric CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sigumura, Y. & Suzuki, Y. Mar. Chem. 24, 105–131 (1988).

    Article  Google Scholar 

  2. Toggweiler, J. R. Nature 334, 468 (1988).

    Article  ADS  Google Scholar 

  3. Williams, P. M. & Druffel, E. R. M. Nature 330, 246–248 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Toggweiler, J. R. Productivity of the Ocean: Present and Past (eds Berger, W. H. et al.) 65–84 (Wiley, New York, 1989).

    Google Scholar 

  5. Ducklow, H. W. Oceanogr. Mag. 2, 4–8 (1989).

    Article  Google Scholar 

  6. Hobbie, J. E. et al. Appl. envir. Microbiol. 33, 1223–1228 (1977).

    Google Scholar 

  7. Landry, M. R. & Hassett, R. P. Mar. Biol. 16, 283–288 (1982).

    Article  Google Scholar 

  8. Ducklow, H. W. & Hill, S. M. Limnol. Oceanogr. 30, 239–259 (1985).

    Article  ADS  Google Scholar 

  9. Taylor, G. T. et al. Mar. Ecol. Prog. Ser. 23, 129–141 (1985).

    Article  ADS  Google Scholar 

  10. Barber, R. T. Nature 220, 274–275 (1968).

    Article  ADS  CAS  Google Scholar 

  11. Ogura, N. Mar. Biol. 13, 89–93 (1972).

    Article  CAS  Google Scholar 

  12. Williams, P. J. leB. Chemical Oceanography (eds Riley, J. P. & Skirrow, G.) 301–363 (Academic, London, 1975).

    Google Scholar 

  13. Wheeler, P. A. & Kirchman, D. L. Limnol. Oceanogr. 31, 998–1009 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Meyer, J. L. et al. Microbiol. Ecol. 13, 13–29 (1987).

    Article  CAS  Google Scholar 

  15. Bjørnsen, P. K. Mar. Ecol. Prog. Ser. 30, 191–196 (1986).

    Article  ADS  Google Scholar 

  16. Williams, P. J. leB. Kiel. Meeresforsch. 5, 1–28 (1981).

    Google Scholar 

  17. Fuhrman, J. A. Mar. Ecol. Prog. Ser. 66, 197–203 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Sharp, J. H. Nitrogen in the Marine Environment (eds Carpenter, E. J. & Capone, D. G.) 1–35 (Academic, New York, 1983).

    Book  Google Scholar 

  19. Duursma, E. K. Neth. J. Sea Res. 1, 3–190 (1961).

    Article  Google Scholar 

  20. Keil, R. G. & Kirchman, D. L. Mar. Ecol. Prog. Ser. 73, 1–10 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Kirchman, D. L. et al. Deep-Sea Res. 36, 1763–1776 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Jackson, G. A. & Williams, P. M. Deep-Sea Res. 32, 223–235 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Ittekkot, V. et al. Mar. Ecol. Prog. Ser. 4, 299–305 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Kirchman, D. L. et al. Limnol. Oceanogr 35, 1258–1266 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Parsons, T. R. et al. Mar. envir. Res. 4, 229–242 (1980/1981).

    Article  Google Scholar 

  26. Suzuki, Y. et al. Mar. Chem. 16, 83–97 (1985).

    Article  CAS  Google Scholar 

  27. Nagata, T. & Watanabe, Y. Appl. envir. Microbiol. 56, 1303–1309 (1990).

    CAS  Google Scholar 

  28. Bratbak, G. Appl. envir. Microbiol. 33, 1488–1493 (1985).

    Google Scholar 

  29. Whitledge, T. E. et al. Automated Nutrient Analyses in Seawater, Brookhaven Natl. Lab. Publ. No. 51398 (Department of Energy and Environment, Upton, New York, 1981).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchman, D., Suzuki, Y., Garside, C. et al. High turnover rates of dissolved organic carbon during a spring phytoplankton bloom. Nature 352, 612–614 (1991). https://doi.org/10.1038/352612a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352612a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing