Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium

Abstract

METHODS for measuring plant cytoplasmic calcium using micro-electrodes or microinjected fluorescent dyes are associated with extensive technical problems, so measurements have been limited to single or small groups of cells in tissue strips or protoplasts1,2. Aequorin is a calcium-sensitive luminescent protein3 from the coelenterate Aequorea Victoria (A. forskalea) which is formed from apoaequorin, a polypeptide of relative molecular mass 22,000, and coelenterazine, a hydrophobic luminophore4. Microinjected aequorin has been widely used for intracellular calcium measurement in animal cells4, but its use in plants has been limited to exceptionally large cells5. We show here that aequorin can be reconstituted in transformed plants and that it reports calcium changes induced by touch, cold-shock and fungal elicitors. Reconstituted aequorin is cytoplasmic and nonperturbing; measurements can be made on whole plants and a calcium indicator can be constituted in every viable cell. Now that apoaequorin can be targeted to specific organelles, cells and tissues, with the range of coelenterazines with differing calcium sensitivities and properties available6, this new method could be valuable for determining the role of calcium in intracellular signalling processes in plants.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Gilroy, S., Hughes, W. A. & Trewavas, A. J. FEBS Lett. 199, 217–221 (1986).

    CAS  Article  Google Scholar 

  2. Gilroy, S., Read, N. D. & Trewavas, A. J. Nature 346, 769–771 (1990).

    ADS  CAS  Article  Google Scholar 

  3. Shimomura, O., Johnson, F. H. & Saiga, Y. J. Cell. Physiol. 59, 223–240 (1962).

    CAS  Article  Google Scholar 

  4. Campbell A. K. Intracellular Calcium—its Universal Role as Regulator (Wiley, Ctiichester, 1983).

    Google Scholar 

  5. Williamson, R. E. & Ashley, C. C. Nature 296, 647–651 (1982).

    ADS  CAS  Article  Google Scholar 

  6. Shimomura, O., Musicki, B. & Kishi, Y. Biochem. J. 261, 913–920 (1989).

    CAS  Article  Google Scholar 

  7. Prasher, D. C., McCann, R. O. & Cormier, M. J. Biochem. biophys. Res. Commun. 126, 1259–1268 (1985).

    CAS  Article  Google Scholar 

  8. Franck, G., Guille, M., Jonard, G., Richards, K. & Hirth, L. Cell 21, 285–294 (1980).

    CAS  Article  Google Scholar 

  9. Bevan, M. Nucleic Acids Res. 12, 8711–8721 (1984).

    CAS  Article  Google Scholar 

  10. Blinks, J. R. et al. Meth. Enzym. 57, 292–328 (1978).

    CAS  Article  Google Scholar 

  11. Braam, J. & Davis, R. W. Cell 60, 357–364 (1990).

    CAS  Article  Google Scholar 

  12. Minorsky, P. V. Pl. Cell Envir. 8, 75–94 (1985).

    CAS  Article  Google Scholar 

  13. Mauch, F. & Staehelin, L. A. Pl. Cell 1, 447–457 (1989).

    CAS  Google Scholar 

  14. Dixon, R. A. Biol. Rev. 61, 239–291 (1986).

    CAS  Article  Google Scholar 

  15. Watson, D. G., Rycroft, D. S., Freer, I. M. & Brooks, C. J. M. Phytochemistry 24, 2195–2200 (1985).

    CAS  Article  Google Scholar 

  16. Hahn, M. G. & Albersheim, P. Pl. Physiol. 62, 107–111 (1978).

    CAS  Article  Google Scholar 

  17. Brooks, C. J. W., Watson, D. G. & Freer, I. M. Phytochemistry 25, 1089–1092 (1986).

    CAS  Article  Google Scholar 

  18. Ebel, J. & Grisebach, H. Trends biochem. Sci. 13, 23–27 (1988).

    CAS  Article  Google Scholar 

  19. Prasher, D. C., McCann, R. O., Longiaru, M. & Cormier, M. in Bioluminescence and Chemiluminecence—New Perspectives. (ed. Scholmerich, J.) 365–368 (Wiley, Chichester, 1986).

    Google Scholar 

  20. Pietrzak, M., Shillito, R. D., Hohn, T. & Potrykus, I. Nucleic Acids Res. 14, 5857–5868.

  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  22. Draper, J., Scott, R., Armitage, P. & Walden, R. Plant Genetic Transformation and Gene Expression— A Laboratory Manual (Blackwell, Oxford, 1988).

    Google Scholar 

  23. Harlow, E. & Lane, D. Antibodies—A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1988).

    Google Scholar 

  24. Campbell, A. K., Patel, A. K., Razavi, Z. S. & McCapra, F. Biochem. J. 252, 143–149 (1988).

    CAS  Article  Google Scholar 

  25. Murashige, T. & Skoog, F. Pl. Physiol. 15, 473–497 (1962).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knight, M., Campbell, A., Smith, S. et al. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524–526 (1991). https://doi.org/10.1038/352524a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352524a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing