Letter | Published:

Accurate prediction of the stability and activity effects of site-directed mutagenesis on a protein core

Naturevolume 352pages448451 (1991) | Download Citation

Subjects

Abstract

THEORETICAL prediction of the structure, stability and activity of proteins, an important unsolved problem in molecular biology, would be of use for guiding site-directed mutagenesis and other protein-engineering techniques. X-ray diffraction studies have provided extensive structural information for many proteins, challenging theorists to develop reliable techniques able to use such knowledge as a base for prediction of mutants' characteristics. Here we report theoretical calculation of stabilization energies for 78 triple-site sequence variants of λ repressor characterized experimentally by Lim and Sauer1. The calculated energies correlate with the mutants' measured activities; active and inactive mutations are discriminated with 92% reliability. They correlate even more directly with the mutants' thermostabilities, correctly identifying two of the mutants to be more stable than the wild type.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Lim, W. A. & Sauer, R. T. J. molec. Biol. 219, 359–376 (1991).

  2. 2

    Bash, P. A., Singh, U. C., Langridge, R. & Kollman, P. A. Science 236, 564–568 (1987).

  3. 3

    Dang, L. X., Merz, K. M. Jr & Kollman, P. A. J. Am. chem. Soc. 111, 8505–8508 (1989).

  4. 4

    Tidor, B. & Karplus, M. Biochemistry 30, 3217–3228 (1991).

  5. 5

    McCammon, J. A. Curr. Opinions struct. Biol. 1, 196–200 (1991).

  6. 6

    Daggett, V. & Kollman, P. A. in Protein Engineering: A Practical Approach (ed. Sternberg, M.) (Oxford University Press, in the press).

  7. 7

    Lee, C. & Subbiah, S. J. molec. Biol. 217, 373–388 (1991).

  8. 8

    Lim, W. A. & Sauer, R. T. Nature 339, 31–36 (1989).

  9. 9

    Jordan, S. R. & Pabo, C. O. Science 242, 893–899 (1988).

  10. 10

    Ponder, J. W. & Richards, F. M. J. molec. Biol. 193, 775–791 (1987).

  11. 11

    Matsumura, M., Becktel, W. J. & Matthews, B. W. Nature 334, 406–410 (1988).

  12. 12

    Karpusas, M., Baase, W. A., Matsumura, M. & Matthews, B. W. Proc. natn. Acad. Sci. U.S.A. 86, 8237–8241 (1989).

  13. 13

    Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F. & Wilson, A. C. Nature 345, 86–89 (1990).

  14. 14

    Dao-Pin, S., Baase, W. A. & Matthews, B. W. Proteins struct. funct. Genet. 7, 198–204 (1990).

  15. 15

    Kellis, J. T. Jr, Nyberg, K., Sali, D. & Fersht, A. R. Nature 333, 784–786 (1988).

  16. 16

    Kellis, J. T. Jr, Nyberg, K. & Fersht, A. R. Biochemistry 28, 4914–4922 (1989).

  17. 17

    Shortle, D. & Meeker, A. K. Proteins struct. funct. Genet. 1, 81–89 (1986).

  18. 18

    Shortle, D., Meeker, A. K. & Gerring, S. L. Archs Biochem. Biophys. 272, 103–113 (1989).

  19. 19

    Shortle, D., Stites, W. E. & Meeker, A. K. Biochemistry 29, 8033–8041 (1990).

Download references

Author information

Affiliations

  1. Beckman Laboratories for Structural Biology, Department of Cell Biology, Stanford University Medical Center, Stanford, California, 94305, USA

    • Christopher Lee
    •  & Michael Levitt

Authors

  1. Search for Christopher Lee in:

  2. Search for Michael Levitt in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/352448a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.