Letter | Published:

Sodium channel density in hypomyelinated brain increased by myelin basic protein gene deletion

Naturevolume 352pages431434 (1991) | Download Citation

Subjects

Abstract

TROPHIC control over the expression and membrane distribution of voltage-dependent ion channels is one of the principal organizing events underlying the maturation of excitable cells. The myelin sheath is a major structural determinant of regional ion channel topography in central axons1,2, but the exact molecular signals that mediate local interactions between the oligodendrocyte and axolemma are not known. We have found that large caliber fibre pathways in the brain of the mutant mouse shiverer (shi, gene on chromosome 18), whose developmental fate of myelination is averted by deletion of five exons in the myelin basic protein gene3–5, have a striking excess of sodium channels. As cytoplasmic membranes of shiverer oligodendroglia still adhere to axons6–8, the evidence indicates that myelin basic protein or a myelin basic protein-dependent glial transmembrane signal associated with compact myelin formation, rather than a simple glial–axon contact inhibition or an intrinsic genetic program of neuronal differentiation, could be critical in downregulating sodium channel density in axons. Here we use the shiverer mutant to show that mature central nervous system projection neurons with large caliber unmyelinated fibres sustain functional excitability by increasing sodium channel density. This axon plasticity, triggered by the absence of a single glial protein, contributes to the unexpectedly mild degree of neurological impairment in the mutant brain without myelin, and may be a potentially inducible mechanism determining the recovery of function from dysmyelinating disease.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Waxman, S. G. Prog. Brain Res. 71, 121–141 (1987).

  2. 2

    Rosenbluth, J. Int. J. dev. Neurosci. 6, 3–24 (1988).

  3. 3

    Privat, A. C., Jacque, C., Bourre, J. M., Dupouey, P. & Baumann, N. Neurosci. Lett. 12, 107–112 (1979).

  4. 4

    Roach, A., Takahashi, N., Pravtcheva, D., Ruddle, F. & Hood, L. Cell 42, 149–155 (1985).

  5. 5

    Molineaux, S. M., Engh, H., deFerra, F., Hudson, L. & Lazzarini, R. A. Proc. natn. Acad. Sci. U.S.A. 83, 7542–7546 (1986).

  6. 6

    Rosenbluth, J. J. comp. Neurol. 194, 639–648 (1980).

  7. 7

    Rosenbluth, J. Brain Res. 208, 283–297 (1981).

  8. 8

    Inoue, Y., Nakamura, R., Mikoshiba, K. & Tsukada, Y. Brain Res. 219, 85–94 (1981).

  9. 9

    Sharkey, R. G., Beneski, D. & Catterall, W. A. Biochemistry 23, 6078–6086 (1984).

  10. 10

    Schmidt, J., Rossie, S. & Catterall, W. A. Proc. natn. Acad. Sci U.S.A. 82, 4847–4851 (1985).

  11. 11

    Stumer, W., Methfessel, C., Sakman, B., Noda, M. & Numa, S. Eur. Biophys. J. 14, 131–138 (1987).

  12. 12

    Sontheimer, H., Trotter, J., Schachner, M. & Kettenman, H. Neuron 2, 1135–1145 (1989).

  13. 13

    Barres, B. A., Chun, L. L. Y. & Corey, D. P. Neuron 2, 1375–1388 (1989).

  14. 14

    Sheedlo, H. J. & Siegel, G. J. Brain Res. 415, 105–114 (1987).

  15. 15

    Waxman, S. G., Black, J. A., Duncan, I. D. & Ransom, B. R. J. Neurocytol. 19, 11–27 (1990).

  16. 16

    Waxman, S. G., Black, J. A., Kocsis, J. D. & Ritchie, J. M. Proc. natn. Acad Sci. U.S.A. 86, 1406–1410 (1989).

  17. 17

    Scheinman, R. I. et al. J. biol. Chem. 264, 1060–1066 (1989).

  18. 18

    Chiu, S. Y. & Schwarz, W. J. Physiol. 391, 631–649 (1987).

  19. 19

    Caroni, P. & Schwab, M. E. J. Cell. Biol. 106, 1281–1288 (1988).

  20. 20

    Hodgkin, A. L. Phil. Trans. R. Soc. Lond. B 270, 297–300 (1975).

  21. 21

    Campagnoni, A. T. J. Neurochem. 51, 1–14 (1988).

  22. 22

    Lemke, G. Neuron 1, 535–543 (1988).

  23. 23

    Sorg, B. J., Smith, M. M. & Campagnoni, T. J. Neurochem. 49, 1146–1154 (1987).

  24. 24

    Frail, D. E. & Braun, P. E. J. Neurochem. 45, 1071–1075 (1985).

  25. 25

    Wisniewski, H. M., Oppenheimer, D. & McDonald, W. E. J. Neuropathol. exp. Neurol. 35, 327 (1976).

  26. 26

    Smith, K. J. & McDonald, W. I. Nature 286, 154–155 (1980).

  27. 27

    Offard, J. & Catterall, W. A. Neuron 2, 1447–1452 (1989).

  28. 28

    Lidow, M. S., Goldman-Rakic, P. S., Rakic, P. & Gallagher, D. W. Brain Res. 459, 105–119 (1988).

  29. 29

    Bird, T. D., Farrell, D. F. & Sumo, S. M. J. Neurochem. 31, 387–391 (1978).

  30. 30

    Mourre, C., Moll, C., Loubet, A. & Lazdunski, M. Brain Res. 448, 128–139 (1988).

Download references

Author information

Affiliations

  1. Developmental Neurogenetics Laboratory, Section of Neurophysiology, Department of Neurology, Division of Neuroscience, Institute of Molecular Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA

    • J. L. Noebels
    •  & P. K. Marcom
  2. Department of Biochemistry, Baylor College of Medicine, Houston, Texas, 77030, USA

    • M. H. Jalilian-Tehrani

Authors

  1. Search for J. L. Noebels in:

  2. Search for P. K. Marcom in:

  3. Search for M. H. Jalilian-Tehrani in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/352431a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.