Letter | Published:

Comparison of a calculated spectrum of C60H60 with the unidentified astronomical infrared emission features

Naturevolume 352pages412414 (1991) | Download Citation



INFRARED emission features consisting of narrow lines and broad plateaux, ranging from 3 μm in wavelength to over 12 μm, are seen in a wide variety of astronomical objects in which interstellar or circumstellar gas is illuminated by ultraviolet radiation from a star. Several candidates have been proposed as the source of this emission, but none is widely accepted. Here I calculate the vibrational spectrum of the fullerane C60H60, the saturated hydride of the soccerball-shaped molecule C60, using a force-field model. Six of the infrared active frequencies match unidentified emission lines to within 4%, and a seventh differs from an observed line by 8%. The calculation suggests why the astronomical feature at 7.7 μm is the strongest, and the observed variation of the 3.4 μm and 3.28 μm features with astrophysical environment is consistent with the idea that the former is attributable to stretching of the C–H bond in heavily hydrogenated fulleranes, whereas the latter is due to the same transition in lightly hydrogenated fulleranes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Gillett, F. C., Forrest, W. J. & Merrill, K. M. Astrophys. J. 183, 87–93 (1973).

  2. 2

    Russell, R. W., Soifer, B. T. & Willner, S. P. Astrophys. J. 217, L149–L153 (1977).

  3. 3

    Bregman, J. D. in Interstellar Dust. IAU Symp. No. 135 (eds Allamandola, L. J. & Tielens, A. G. G. M.) 109–118 (Kluwer, Dordrecht, 1989).

  4. 4

    Allamandola, L. J. in Interstellar Dust. IAU Symp. No. 135 (eds Allamandola, L. J. & Tielens, A. G. G. M.) 129–139 (Kluwer, Dordrecht, 1989).

  5. 5

    Roche, P. F., Aitken, D. K. & Smith, C. H. Mon. Not. R. astr. Soc. 236, 485–494 (1989).

  6. 6

    Bregman, J. D. et al. Astrophys. J. 274, 666–670 (1983).

  7. 7

    Buss, R. H. et al. Astrophys. J. 365, L23–L26 (1990).

  8. 8

    Cohen, M. et al. Astrophys. J. 302, 737–749 (1986).

  9. 9

    Sellgren, K. in Dusty Objects in the Universe (eds Bussoletti, E. & Vittone, A. A.) 35–47 (Kluwer, Dordrecht, 1990).

  10. 10

    Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).

  11. 11

    Léger, A., d'Hendecourt, L., Verstraete, L. & Schmidt, W. Astron. Astrophys. 203, 145–148 (1988).

  12. 12

    Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

  13. 13

    Wilson, E. B., Decius, J. C. & Cross, P. C. Molecular Vibrations (Dover, New York, 1955).

  14. 14

    Herzberg, G. Electronic Spectra of Polyatomic Molecules (van Nostrand Reinhold, New York, 1955).

  15. 15

    Schachtschneider, J. H. & Snyder, R. G. Spectrochim. Acta 19, 117–168 (1963).

  16. 16

    Califano, S. Vibrational States (Wiley, London, 1976).

  17. 17

    Paquette, L. A., Ternansky, R. J., Balogh, D. W. & Kentgen, G. J. Am. chem. Soc. 105, 5446–5450 (1983).

  18. 18

    Geballe, T. R., Tielens, A. G. G. M., Allamandola, L. J., Morehouse, A. & Brand, P. W. J. L. Astrophys. J. 341, 278–287 (1989).

Download references

Author information


  1. Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK

    • Adrian Webster


  1. Search for Adrian Webster in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.