
SCIENTIFIC CORRESPONDENCE 

Material, radius of curvature (rj and focal length 
(f) of biconcave lens for 8-keV X-ray 

Material r(mm) f(m) 

Gold 10 100 

Gold 5 50 

Platinum 10 90 

Tungsten 10 100 

shows the materials, the radii of curva
ture and the focal lengths for biconcave 
lenses. Because the lens is concave, we 
can reduce the thickness to a few micro
metres by using a Fresnel lens, which 
can be made with an ultra-fine lathe. 
The intensity reduction due to absorp
tion, therefore, may be a factor of only 
1/10. Parasitic, fluorescent X-rays from 
the lens diverge isotropically; we can 
eliminate them by conventional slits. 

The advantages of lenses over mirrors 
are as follows. (1) The instability of the 
principal axis of the lens relative to the 
beam direction does not give rise to 
serious change in the position of the 
focal image of the light source. (2) The 
parasitic scattering due to the surface 
roughness of a lens is reduced to a factor 
of {J (lo-6

) compared with that for a 
mirror with the same roughness. (3) The 
lens is much smaller than a mirror; to get 
a beam 1 mm in diameter, a totally 
reflecting mirror is typically 10 em in 
length, whereas a lens needs to be only a 
few millimetres in diameter. No bending 

mechanism is required for lenses. (4) As 
the lens is made of metal, cooling effi
ciency is high. This is an important 
feature of optical devices for strong syn
chrotron radiation. (5) The beam path is 
straight in the lens system; a totally 
reflecting mirror causes deviation of the 
focused position from the straight beam 
path by a few tens of metres for a 1-km 
beam line. 

Another possible application of X-ray 
lenses may be microscopy. For soft X
rays of 10 nm in wavelength, {J is about 
10-2 for graphite; we can adopt concave 
lenses for X-ray microscopy instead of 
zone plates. 
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Bayesian reasoning in science 
SIR - C. Howson and P. Urbach in 
their Commentary on bayesian reasoning 
in science (Nature 350, 371-374; 1991) 
state: "It might be imagined that a 95 
per cent confidence interval corresponds 
to a 0.95 probability that the unknown 
paramater lies in the confidence range. 
But in the classical approach p. is not a 
random variable, and so has no probabil
ity. Nevertheless, statisticians regularly 
say that one can be '95 per cent confi
dent' that the parameter lies in the 
confidence interval." 

It seems that this problem can be 
solved by saying: the 95 per cent confi
dence interval covers p. with a probabil
ity of 95 per cent. 
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H. TRAUT 

SIR - Howson and Urbach's eloquent 
contribution1 to the literature intended 
to persuade scientists to adopt bayesian 
methods of statistical inference does not 
fall on deaf ears, but rather on ears 
eager to hear any fresh argument that 
could dispel the doubts repeatedly ex
pressed in the 140 years since the time of 
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George Boole. For it is certainly true 
that, were the universal application of 
bayesian methods possible, both statis
tical theory and statistical practice would 
be greatly simplified. But Howson and 
Urbach do nothing to dispel these 
doubts, which can be summarized as 
follows. 

No reason has been advanced for why 
the calculus of probability, so perfectly 
matched to the treatment of uncertain 
events, should apply to the treatment of 
scientific hypotheses. Whereas in the 
former case, the universe of possibilities 
is closed under the logical operations of 
'and', 'or' and 'not', in the latter case 
this is not true, so that the addition 
axiom of probability is not appropriate. 
It was the removal of this axiom by 
R. A. Fisher in 1921 which gave rise to 
the important non-additive concept of 
likelihood. 

Nor is it correct to imply, as do 
Howson and Urbach, that the applica
tion of the modern axioms of probability 
to hypotheses derives from the work of 
Fermat, Pascal, Huyghens and Ber
noulli. Their work grew out of games 
of chance; even when Bernoulli, in the 
fourth part of Ars conjectandi, turned his 
attention to the problem of statistical 

inference, the only example he gave of 
the application of his famous (non
bayesian) procedure involved drawing 
balls out of an urn. Nor should the name 
of Thomas Bayes be too closely associ
ated with modern bayesian arguments: 
that cautious man not only (like Ber
noulli) made no attempt to publish his 
work during his lifetime, but his advo
cacy of the use of a prior distribution 
was tentative. 

Unsurprisingly, the application of the 
probability axioms to scientific hypoth
eses leads to serious difficulties concern
ing the prior distributions to be adopted 
in the absence of information, as may 
be demonstrated using an example of 
Fisher's. A homozygous black mouse 
(BB) when mated to a heterozygous 
black (Bb) will produce only black mice, 
but half will be expected to be homo
zygotes and half heterozygotes. An 
offspring of such a mating, therefore, 
may be stated, before progeny-testing, 
to be homozygous with probability 
one-half. 

Now a bayesian statistician, con
fronted with a black mouse about whose 
ancestry he knows nothing (and whose 
ignorance of mendelian genetics is, in 
any case, complete) is constrained by his 
axioms to assert that, because he is 
unable to see any reason why the black 
mouse should be of one genotype rather 
than the other, the mouse is homozygous 
with probability one-half. Thus the baye
sian's assertion, based on ignorance, is 
exactly the same as the scientist's, based 
on partial knowledge. 

Fisher remarked that "It is evidently 
easier for the practitioner of natural 
science to recognize the difference be
tween knowing and not knowing than 
this seems to be for the more abstract 
mathematician", adding that "no ex
perimenter would feel he had a warrant 
for arguing as if he knew that of which in 
fact he was ignorant". As Boole3 had 
remarked in 1854, the appearance of 
arbitrary constants reflecting the prior 
assumptions of bayesian theory "seems 
to imply, that definite solution is im
possible, and to mark the point where 
inquiry ought to stop". 

Though I hold no brief for the 
'repeated-sampling' theories of statistical 
inference about which Howson and 
Urbach are critical, in one example they 
are unfairly so. They assert that statisti
cians "never say why one can be '95 per 
cent confident' that the parameter lies in 
the confidence interval" in the case of 
the unknown mean p, of a normal dis
tribution with known (not estimated) 
standard deviation of the mean s and 
observed mean m, for which the confi
dence interval is m - 1.96s ,;;; p, ,;;; m + 
1.96s. 

The reason was given by Fisher in the 
early 1930s. He pointed out (1) that if 
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