Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs

Abstract

IN vertebrates, mature eggs are arrested at the second meiotic metaphase by the cytostatic factor (CSF)1, now known to be thec- mos proto-oncogene product (Mos)2, 3. Fertilization or egg activaá-tion triggers a transient increase in the cytoplasmic free calcium4, 5 and releases the meiotic arrest by inactivating maturation/mitosis-promoting factor (MPF)6, 7. CSF or Mos, which is also inactivated by the calcium transient8, 9, seems to stabilize MPF in mature eggs and CSF-injected embryos2, 6, 10. Thus, it was assumed that CSF inactivation is the primary cause of MPF inactivation on meiotic release2, 6, 8, 10–14. We have directly compared the degradation kinetics of CSF (Mos) and MPF during meiotic release, using the same batch of Xenopus eggs. We report here that, at the molecular level, cyclin subunits of MPF are degraded before Mos is degraded and, at the physiological level, that MPF activity is inactivated before CSF activity during activation of Xenopus eggs. These results, in conjunction with circumstantial evidence, support the novel view that a calcium transient on fertilization induces a CSF-independent pathway for MPF inactivation, whereas CSF inactivation during meiotic release serves only to allow the fertilá-ized egg to enter mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Masui, Y. & Markert, C. L. J. exp. Zool. 177, 129–146 (1971).

    Article  CAS  Google Scholar 

  2. Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. Nature 342, 512–518 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Okazaki, K. et al. Jap. J. Cancer Res. 82, 250–253 (1991).

    Article  CAS  Google Scholar 

  4. Busa, W. B. & Nuccitelli, R. J. Cell Biol. 100, 1325–1329 (1989).

    Article  Google Scholar 

  5. Kubota, H. Y., Yoshimoto, Y., Yoneda, M. & Hiramoto, Y. Devl Biol. 119, 129–136 (1987).

    Article  CAS  Google Scholar 

  6. Newport, J. W. & Kirschner, M. W. Cell 37, 731–742 (1984).

    Article  CAS  Google Scholar 

  7. Murray, A. W. & Kirschner, M. W. Nature 339, 275–280 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Meyerhof, P. G. & Masui, Y. Devl Biol. 61, 214–229 (1977).

    Article  CAS  Google Scholar 

  9. Watanabe, N., Vande Woude, G. F., Ikawa, Y. & Sagata, N. Nature 342, 505–511 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Gerhart, J., Wu, M. & Kirschner, M. J. Cell Biol. 98, 1247–1255 (1984).

    Article  CAS  Google Scholar 

  11. Murray, A. W., Solomon, M. J. & Kirschner, M. W. Nature 339, 280–286 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Hunt, T. Nature 342, 483–484 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Roy, L. M. et al. Cell 61, 825–831 (1990).

    Article  CAS  Google Scholar 

  14. Lorca, T. et al. Molec. cell. Biol. 11, 1171–1175 (1991).

    Article  CAS  Google Scholar 

  15. Gautier, J. et al. Cell 60, 487–494 (1990).

    Article  CAS  Google Scholar 

  16. Minshull, J., Golsteyn, R., Hill, C. S. & Hunt, T. EMBO J. 9, 2865–2875 (1990).

    Article  CAS  Google Scholar 

  17. Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. & Vande Woude, G. F. Nature 335, 519–525 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Freeman, R. S., Kanki, J. P., Ballantyne, S. M., Pickham, K. M. & Donoghue, D. J. J. Cell Biol. 111, 533–541 (1990).

    Article  CAS  Google Scholar 

  19. Yew, N., Oskarsson, M., Daar, I., Blair, D. G. & Vande Woude, G. F. Molec. cell. Biol. 11, 604–610 (1991).

    Article  CAS  Google Scholar 

  20. Shibuya, E. K. & Masui, Y. Devl Biol. 129, 253–264 (1988).

    Article  CAS  Google Scholar 

  21. Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. J. Cell Biol. 98, 1730–1745 (1984).

    Article  CAS  Google Scholar 

  22. Glotzer, M., Murray, A. W. & Kirschner, M. W. Nature 349, 132–138 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Studier, F. W. & Moffatt, B. A. J. molec. Biol. 189, 113–130 (1986).

    Article  CAS  Google Scholar 

  24. Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D. & Vande Woude, G. F. Science 245, 643–646 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, N., Hunt, T., Ikawa, Y. et al. Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs. Nature 352, 247–248 (1991). https://doi.org/10.1038/352247a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352247a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing