Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel

Abstract

THE L-type voltage-dependent calcium channel is an important link in excitation-contraction coupling of muscle cells1 (reviewed in refs 2 and 3). The channel has two functional characteristics: calcium permeation and receptor sites for calcium antagonists. In skeletal muscle the channel is a complex of five subunits, α1, α2, β, γ and δ (ref. 4). Complementary DNAs to these subunits have been cloned and their amino-acid sequences deduced5–8. The skeletal muscle α1 subunit cDNA expressed in L cells manifests as specific calcium-ion permeation, as well as sensitivity to the three classes of organic calcium-channel blockers9,10. We report here that coexpression of the α1, subunit with other subunits results in significant changes in dihydropyridine binding and gating properties. The available number of drug receptor sites increases 10-fold with an α1 β combination, whereas the affinity of the dihydropyridine binding site remains unchanged. Also, the presence of the β subunit accelerates activation and inactivation kinetics of the calcium-channel current.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Hess, P. A. Rev. Neurosci. 13, 337–356 (1990).

    Article  CAS  Google Scholar 

  3. Tsien, R. W. & Tsien, R. Y. An. Rev. Cell Biol. 6, 715–760 (1990).

    Article  CAS  Google Scholar 

  4. Vaghy, P. L., McKenna, E., Itagaki, K. & Schwartz, A. Trends pharmacol. Sci. 9, 398–402 (1988).

    Article  CAS  Google Scholar 

  5. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Ellis, S. B. et al. Science 241, 1661–1664 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Ruth, P. et al. Science 245, 1115–1118 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Jay, S. D. et al. Science 248, 490–492 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Perez-Reyes, E. et al. Nature 340, 233–236 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Kim, H. S. et al. J. biol. Chem. 265, 11858–11863 (1990).

    CAS  PubMed  Google Scholar 

  11. Janis, R. A., Silver, P. J. & Triggle, D. J. Adv. Drug Res. 16, 309–591 (1987).

    CAS  Google Scholar 

  12. Lory, P., Rassendren, F. A., Richard, S., Tiaho, F. & Nargeot, J. J. Physiol., Lond. 429, 95–112 (1990).

    Article  CAS  Google Scholar 

  13. Caffrey, J. D., Brown, A. M. & Schneider, M. D. Science 236, 570–573 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Caffrey, J. D., Brown, A. M. & Schneider, M. D. J. Neurosci. 9, 3443–3453 (1989).

    Article  CAS  Google Scholar 

  15. Mikami, A. et al. Nature 340, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Biel, M. et al. FEBS Lett. 269, 409–412 (1990).

    Article  CAS  Google Scholar 

  17. Mori, Y. et al. Nature 350, 398–402 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Slish, D. F. et al. FEBS Lett. 250, 509–514 (1989).

    Article  CAS  Google Scholar 

  19. Koch, W. J., Ellinor, P. T. & Schwartz, A. J. biol. Chem. 265, 17786–17791 (1990).

    CAS  PubMed  Google Scholar 

  20. Perez-Reyes, E., Wei, X., Castellano, A. & Birnbaumer, L. J. biol. Chem. 265, 20430–20436 (1990).

    CAS  PubMed  Google Scholar 

  21. Pragnell, M., Leveille, C. F., Jay, S. D. & Campbell, K. P. Biophys. J. 59, 390 (1991).

    Google Scholar 

  22. Schwartz, L. M., McCleskey, E. W. & Aimers, W. Nature 314, 747–751 (1985).

    Article  ADS  CAS  Google Scholar 

  23. McPherson, G. A. KINETIC, EBDA, LIGAND. LOWRY (Elsevier, UK, 1985).

  24. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  26. Chen, C. & Okayama, H. Molec. cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  27. Lee, F., Mulligan, R., Berg, P. & Ringold, G. Nature 294, 228–232 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Okayama, H. & Berg, P. Molec. cell. Biol. 3, 280–289 (1983).

    Article  CAS  Google Scholar 

  29. Hamill, O. P. et al. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varadi, G., Lory, P., Schultz, D. et al. Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel. Nature 352, 159–162 (1991). https://doi.org/10.1038/352159a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352159a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing