Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fullerenes C60 and C70 in flames


THE fullerenes C60 and C70 were first identified1 in carbon vapour produced by laser irradiation of graphite, and have recently been produced in macroscopic quantities2–5 by vaporization of graphite with resistive heating. It has also been suggested6–9 that fullerenes might be formed in sooting flames, and indeed all-carbon ions with mass/charge ratios suggestive of fullerenes have been detected in flames10–12. These species were assumed to have the cage structures of fullerenes, but the mass spectroscopic evidence could not establish this conclusively. We have now collected samples of condensible compounds and soot from hydrocarbon combustion under a range of conditions, and analysed these using conventional techniques in an effort to detect fullerenes. Spectroscopic studies reveal the presence of C60 and C70 in yields and ratios that depend on temperature, pressure, carbon/oxygen ratio and residence time in the flame. Control of these conditions allows optimal yields of 3 g of fullerenes per kilogram of fuel carbon burned, and variation of the C70/C60 ratio over the range 0.26–5.7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–164 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffmann, D. R. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  3. Taylor, R., Hare, J. P., Abdul-Sada, A. K. & Kroto, H. W. JCS Chem. Commun. 1423–1425 (1990).

  4. Ajie, H. et al. J. phys. Chem. 94, 8630–8633 (1990).

    Article  CAS  Google Scholar 

  5. Haufler, R. E. et al. J. phys. Chem. 94, 8634–8636 (1990).

    Article  CAS  Google Scholar 

  6. Zhang, Q. L. et al. J. phys. Chem. 90, 525–528 (1986).

    Article  CAS  Google Scholar 

  7. Kroto, H. W. & McKay, K. Nature 331, 328–331 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Curl, R. F. & Smalley, R. E. Science 242, 1017–1022 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Kroto, H. Science 242, 1139–1145 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Gerhardt, P., Löffler, S. & Homann, K. H. Chem. Phys. Lett. 137, 306–310 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Gerhardt, P., Löffler, S. & Homann, K. H. 22nd Int. Symp. Combustion 395–401 (The Combustion Institute, Pittsburgh, 1989).

  12. Löffler, S. & Homann, K. H. 23rd Int. Symp. Combustion 355–362 (The Combustion Institute, Pittsburgh, 1990).

  13. Bittner, J. D. & Howard, J. B. 18th Int. Symp. Combustion 1105–1116 (The Combustion Institute, Pittsburgh, 1981).

  14. McKinnon, J. T. thesis, Massachusetts Institute of Technology (1989).

  15. Homann, K. H., Mochizuki, M. & Wagner, H. G. Z. phys. Chem. 37, 299–313 (1963).

    Article  Google Scholar 

  16. Homann, K. H., Morgeneyer, W. & Wagner, H. G. Proc. Combustion Inst. Eur. Symp. (ed. Weinberg, F. J.) 394–399 (Academic, London, 1973).

    Google Scholar 

  17. Olson, D. B. & Calcote, H. F. 18th Int. Symp. Combustion 453–462 (The Combustion Institute, Pittsburgh, 1981).

    Google Scholar 

  18. Bockhorn, H., Fetting, F. & Wenz, H. Ber. Bunsenges. phys. Chem. 87, 1067–1073 (1983).

    Article  CAS  Google Scholar 

  19. Howard, J. B. & Bittner, J. D. Soot in Combustion Systems and Its Toxic Properties (eds Lahaye, J. & Prado, G.) 57–91 (Plenum, New York, 1983).

    Book  Google Scholar 

  20. Luffer, D. R. & Schram, K. H. Rapid Commun. Mass Spectrom. 4, 552–556 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Fetzer, J. C. & Biggs, W. R. J. Chromatogr. 322, 275–286 (1985); 346, 81–92 (1985); 295, 161–169 (1984).

    Article  CAS  Google Scholar 

  22. Lafleur, A. L., Monchamp, P. A., Plummer, E. F. & Wornat, M. J. Anal. Lett. 20, 1171–1192 (1987).

    Article  CAS  Google Scholar 

  23. Kräschmer, W., Fostiropoulos, K. & Huffman, D. R. Chem. Phys. Lett. 170, 167–170 (1990).

    Article  ADS  Google Scholar 

  24. Howard, J. B. 23rd Int. Symp. Combustion (The Combustion Institute, Pittsburgh, in the press).

  25. McKinnon, J. T. & Howard, J. B. Combust. Sci. Technol. 74, 175–197 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Howard, J., McKinnon, J., Makarovsky, Y. et al. Fullerenes C60 and C70 in flames. Nature 352, 139–141 (1991).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing