Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol- transfer protein

Abstract

The yeast phosphatidylinositol-transfer protein (Sec14) catalyses exchange of phosphatidylinositol and phosphatidylcholine between membrane bilayers in vitro1,2. In vivo, Sec14 activity is essential for vesicle budding from the Golgi complex3. Here we report a three-dimensional structure for Sec14 at 2.5 Å resolution. Sec14 consists of twelve α-helices, six β-strands, eight 310-helices and has two distinct domains. The carboxy-terminal domain forms a hydrophobic pocket which, in the crystal ructure, is occupied by two molecules of n-octyl-β-D-glucopyranoside and represents the phospholipid-binding domain. This pocket is reinforced by a string motif whose disruption in a sec14 temperature-sensitive mutant results in destabilization of the phospholipid-binding domain. Finally, we have identified an unusual surface helix that may play a critical role in driving Sec14-mediated phospholipid exchange. From this structure, we derive the first molecular clues into how a phosphatidylinositol-transfer protein functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sec14 structure.
Figure 2: Bound detergent in the Sec14 structure.
Figure 3: Bulldozer model for Sec14-mediated phospholipid exchange.

Similar content being viewed by others

References

  1. Bankaitis, V. A., Aitken, J. R., Cleves, A. E. & Dowhan, W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347, 561–562 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Cleves, A. E., McGee, T. P. & Bankaitis, V. A. Phospholipid transfer proteins: a biological debut. Trends Cell Biol. 1, 30–34 (1991).

    Article  CAS  Google Scholar 

  3. Kearns, B. G.et al. An essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101–105 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Salama, S. R., Cleves, A. E., Malehorn, D. E., Whitters, E. A. & Bankaitis, V. A. Cloning and characterization of Kluyveromyces lactis SEC14, a gene whose product stimulates Golgi secretory function in Saccharomyces cerevisiae. J. Bact. 172, 4510–4521 (1990).

    Article  CAS  Google Scholar 

  5. Sato, Y.et al. Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde protein. J. Biol. Chem. 268, 17705–17710 (1993).

    CAS  PubMed  Google Scholar 

  6. Gu, M., Warshawsky, I. & Majerus, P. W. Cloning and expression of megakaryocyte protein-tyrosine-phosphatase with sequence homology to retinaldehyde binding protein and yeast SEC14p. Proc. Natl Acad. Sci. USA 88, 2980–2984 (1992).

    Article  ADS  Google Scholar 

  7. Chinen, K., Takahashi, E. & Nakamura, Y. Isolation and mapping of a human gene (SEC14L), partially homologous to yeast SEC14, that contains a variable number of tandem repeat (VNTR) sites in its 3′ untranslated region. Cytogenet. Cell Genet. 73, 218–223 (1996).

    Article  CAS  Google Scholar 

  8. Cleves, A. E.et al. Mutations in the DP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64, 789–800 (1991).

    Article  CAS  Google Scholar 

  9. McGee, T. P., Skinner, H. B., Whitters, E. A., Henry, S. A. & Bankaitis, V. A. Aphosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J. Cell Biol. 124, 273–287 (1994).

    Article  CAS  Google Scholar 

  10. Sha, B. D., Phillips, S. E., Bankaitis, V. A. & Luo, M. Crystallization and preliminary X-ray diffraciton studies of the Saccharomyces cerevisiae phospholipid-transfer protein Sec14p. Acta Crystallogr. D 53, 784–786 (1997).

    Google Scholar 

  11. Holm, L. & Sander, C. Searching protein structure databases has come of age. Proteins 19, 165–173 (1994).

    Article  CAS  Google Scholar 

  12. Skinner, H. B., Alb, J. B., Whitters, E. A., Helmkamp, G. M. & Bankaitis, V. A. Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J. 12, 4775–4789 (1993).

    Article  CAS  Google Scholar 

  13. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  Google Scholar 

  14. Bankaitis, V. A., Malehorn, D. E., Emr, S. D. & Greene, R. The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108, 1271–1281 (1989).

    Article  CAS  Google Scholar 

  15. Cleves, A. E., Novick, P. J. & Bankaitis, V. A. Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J. Cell Biol. 109, 2939–2950 (1989).

    Article  CAS  Google Scholar 

  16. Bankaitis, V. A., Fry, M. R., Cartee, R. T. & Kagiwada, S. Phospholipid Transfer Proteins: Emerging Roles in Vesicle Trafficking, Signal Transduciton, and Metabolic Regulation (Lanes, Austin, TX, 1996).

    Google Scholar 

  17. Dickeson, S. K.et al. Isolation and sequence of cDNA clones encoding rat phosphatidylinositol transfer protein. J. Biol. Chem. 264, 16557–16564 (1989).

    CAS  PubMed  Google Scholar 

  18. Alb, J. G. J, Melissa, A. K. & Bankaitis, V. A. Phospholipid metabolism and membrane dynamics. Curr. Opin. Cell Biol. 8, 534–541 (1996).

    Article  CAS  Google Scholar 

  19. Minor, W. XdisplayF Program (Purdue Univ., West Lafayette, 1993).

    Google Scholar 

  20. Otwinowski, Z. Proc. CCP4 Study Weekend: Data Collection and Processing (compiled by Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SER Daresbury Laboratory, England, 1993).

    Google Scholar 

  21. McRee, D. E. Avisual protein crystallographic sofware system for X11/XView. J. Mol. Graphics. 10, 44–46 (1992).

    Article  Google Scholar 

  22. CCP4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  23. Matthews, B. W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  24. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Brunger, A. T. X-PLOR, version 3.85. A system for X-ray diffraction: solvation properties of penicillopepsion and neuraminidase crystal structure. J. Mol. Biol. 243, 100–115 (1994).

    Article  Google Scholar 

  26. Jiang, J. S. & Brunger, A. T. Protein hydration observed by X-ray diffraction: solvation properties of penicillopepsion and neuraminidase crystal structure. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  27. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  28. Nichoos, A. GRASP: Graphical Representation & Analysis Surface Properties (Columbia University, New York, 1992).

    Google Scholar 

  29. Huang, C. & Mason, J. T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc. Natl Acad. Sci. USA 75, 308–310 (1978).

    Article  ADS  CAS  Google Scholar 

  30. Vaz, W. L. C., Goodsaid-Zalduondo, F. & Jacobson, K. A. Lateral diffusion of lipids and proteins in bilayer membranes. FEBS Lett. 174, 199–207 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Collawn for helpful discussions and critical reading of the manuscript and D. Malehorn for help with site-directed mutagenesis. We thank J. Tsao and Y. Luo for their help in data collection. This work was supported by a grant from the NIH to V.A.B. and NASA to M.L. The X-ray crystallographic coordinates have been deposited in the BNL Protein Data Bank (accession number 1AUA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vytas A. Bankaitis or Ming Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sha, B., Phillips, S., Bankaitis, V. et al. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol- transfer protein. Nature 391, 506–510 (1998). https://doi.org/10.1038/35179

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35179

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing