Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum


THE Ser-His-Asp triad is a well known structural feature of the serine proteases. It has also been directly observed in the catalytic sites of two Upases, whose high-resolution three-dimensional structures have been determined1,2. Lipases show a wide variety of sizes, substrate and positional specificities, and catalytic rates3. They achieve maximal catalytic rates at oil–water interfaces. The fungus Geotrichum candidum produces several different forms of Upases, two of which have been purified to homogeneity4,5. Two lipase genes have been identified, cloned and sequenced6,7. Both code for proteins of 544 amino acids with a total relative molecular mass of about 60,000 (Mr 60K). The two forms are 86% identical. Their isoelectric points differ slightly, being between 4.3 and 4.6. About 7% of the total Mr is carbohydrate. Until now, only a low resolution structure of GCL has been reported8, but no high resolution structure has followed. We now report the three-dimensional structure of a lipase from G. candidum (GCL) at 2.2 Å resolution. Unlike the other Upases and serine proteases, the catalytic triad of GCL is Ser-His-Glu, with glutamic acid replacing the usual aspartate. Although the sequence similarity with the other two Upases is limited to the region near the active-site serine, there is some similarity in their three-dimensional structures. The GCL is also an α/β protein with a central mixed β sheet whose topology is similar to that of the N-terminal domain of human pancreatic lipase. As in the other lipases1,2, the catalytic site is buried under surface loops. Sequence comparisons with proteins from the cholinesterase family suggest that they also contain the Ser-His-Glu triad.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Winkler, F. K., D'Arcy, A. & Hunziker, W. Nature 343, 771–774 (1990).

    ADS  CAS  Article  Google Scholar 

  2. Brady, L. et al. Nature 343, 767–770 (1990).

    ADS  CAS  Article  Google Scholar 

  3. Borgstrom, B. & Brockman, H. L. Lipases (Elsevier, Amsterdam, 1984).

    Google Scholar 

  4. Veeraragavan, K., Colpitts, T. & Gibbs, B. F. Biochim. biophys. Acta 1044, 26–33 (1990).

    CAS  Article  Google Scholar 

  5. Sugihara, A., Shimada, Y. & Tominaga, Y. J. Biochem. 107, 426–430 (1990).

    CAS  Article  Google Scholar 

  6. Shimada, Y., Sugihara, A., Tominaga, Y., Iizumi, T. & Tsunasawa, S. J. Biochem. 106, 383–388 (1989).

    CAS  Article  Google Scholar 

  7. Shimada, Y., Sugihara, A., Iizumi, T. & Tominaga, Y. J. Biochem. 107, 703–707 (1990).

    CAS  Article  Google Scholar 

  8. Hata, Y. et al. J. Biochem. 86, 1821–1827 (1979).

    CAS  Article  Google Scholar 

  9. Schrag, J. D., Li, Y., Wu, S. & Cygler, M. J. molec. Biol. (in the press).

  10. Liao, D.-I. & Remington, S. J. J. biol. Chem. 256, 6528–6531 (1990).

    Google Scholar 

  11. Brenner, S. Nature 34, 528–530 (1988).

    ADS  Article  Google Scholar 

  12. Chapus, C., Sémériva, M., Bovier-Lapierre, C. & Desnuelle, P. Biochemistry 15, 4980–4987 (1976).

    CAS  Article  Google Scholar 

  13. Garner, C. W. J. biol. Chem. 255, 5064–5068 (1980).

    CAS  PubMed  Google Scholar 

  14. Hadvȧry, P., Sidler, W., Meister, W., Vetter, W. & Wolfer, H. J. biol. Chem. 266, 2021–2027 (1991).

    PubMed  Google Scholar 

  15. Koller, W. & Kolattukudy, P. E. Biochemistry 21, 3083–3090 (1982).

    CAS  Article  Google Scholar 

  16. Ettinger, W. F., Thukral, S. K. & Kolattukuddy, P. E. Biochemistry 26, 7883–7886 (1987).

    CAS  Article  Google Scholar 

  17. Yamato, K. et al. Biochem. Genet. 21, 135–145 (1983).

    CAS  Article  Google Scholar 

  18. MacPhee-Quigley, K., Taylor, P. & Taylor, S. J. biol. Chem. 260, 12185–12189 (1985).

    CAS  PubMed  Google Scholar 

  19. Lockridge, O. et al. J. biol. Chem. 262, 549–557 (1987).

    CAS  PubMed  Google Scholar 

  20. Sikorav, J.-L., Kejci, E. & Massoulié, J. EMBO J. 6, 1865–1873 (1987).

    CAS  Article  Google Scholar 

  21. Chapus, C. & Sémériva, M. Biochemistry 15, 4988–4991 (1976).

    CAS  Article  Google Scholar 

  22. Garavito, R. M., Rossmann, M. G., Argos, P. & Eventoff, W. Biochemistry 6, 5065–5071 (1976).

    Google Scholar 

  23. Blow, D. L. Nature 343, 694–695 (1990).

    ADS  CAS  Article  Google Scholar 

  24. Wang, B. C., in Meth. Enzym. 115, 90–112 (1985).

    Google Scholar 

  25. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  26. Jones, T. A. J. appl. Crystallogr. 11, 614–617 (1978).

    Article  Google Scholar 

  27. Brunger, A. T., Karplus, M. & Petsko, G. Acta crystallogr. A45, 50–61 (1989).

    Article  Google Scholar 

  28. Bernstein, F. C. et al. J. molec. Biol. 112, 535–543 (1977).

    CAS  Article  Google Scholar 

  29. Kawaguchi, Y., Honda, H., Taniguchi-Morimura, J. & Iwasaki, S. Nature 341, 164–166 (1989).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schrag, J., Li, Y., Wu, S. et al. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351, 761–764 (1991).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing