Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb

Abstract

Members of the Hedgehog (Hh) and Wnt/Wingless (Wg) families of secreted proteins control many aspects of growth and patterning during animal development1,2. Hh signal transduction leads to increased stability of a transcription factor, Cubitus interruptus (Ci)3,4, whereas Wg signal transduction causes increased stability of Armadillo (Arm/β-catenin)5, a possible co-factor for thetranscriptional regulator Lef1/TCF6. Here we describe a new gene, slimb (for supernumerary limbs), which negatively regulates both of these signal transduction pathways. Loss of function of slimb results in a cell-autonomous accumulation of high levels of both Ci and Arm, and the ectopic expression of both Hh and Wg responsive genes. The slimb gene encodes a conserved F-box/WD40-repeat protein related to Cdc4p, a protein in budding yeast that targets cell-cycle regulators for degradation by the ubiquitin/proteasome pathway7,8,9. We propose that Slimb protein normally targets Ci and Arm for processing or degradation by the ubiquitin/proteasomepathway, and that Hh and Wg regulate gene expression at least in part by inducing changes in Ci and Arm, which protect them from Slimb-mediated proteolysis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ectopic activity of the Hh signal transduction pathway in slmb1 mutant cells.
Figure 2: Accumulation of intact Ci protein in slmb1 mutant cells.
Figure 3: Ectopic activity of the Wg signal transduction pathway in slmbP1493 mutant cells.
Figure 4: slimb encodes an F-box/WD40-repeat protein related to Cdc4p and β-TRCP.

Similar content being viewed by others

References

  1. Nusse, R. & Varmus, H. E. Wnt genes. Cell 69, 1073–1087 (1992).

    Article  CAS  Google Scholar 

  2. Ingham, P. W. Signaling by hedgehog family proteins in Drosophila and vertebrate development. Curr. Opin. Genet. Dev. 5, 492–498 (1995).

    Article  CAS  Google Scholar 

  3. Motzny, C. K. & Holmgren, R. The Drosophila cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech. Dev. 52, 137–150 (1995).

    Article  CAS  Google Scholar 

  4. Aza-Blanc, P., Ramirez-Weber, F., Laget, M., Schwartz, C. & Kornberg, T. Proteolysis that is inhibited by Hedgehog targets cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043–1053 (1997).

    Article  CAS  Google Scholar 

  5. Miller, J. R. & Moon, RT. Signal transduction through β-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539 (1996).

    Article  CAS  Google Scholar 

  6. Nusse, R. Aversatile transcriptional effector of wingless signaling. Cell 89, 321–323 (1997).

    Article  CAS  Google Scholar 

  7. Bai, C.et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).

    Article  CAS  Google Scholar 

  8. Feldman, R. M. R., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. Acomplex of Cdc4p, Skp1p, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    Article  CAS  Google Scholar 

  9. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–220 (1997).

    Article  CAS  Google Scholar 

  10. Jiang, J. & Struhl, G. Protein kinase A and Hedgehog signalling in Drosophila limb development. Cell 80, 563–572 (1995).

    Article  CAS  Google Scholar 

  11. Basler, K. & Struhl, G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368, 208–214 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Tabata, T. & Kornberg, T. B. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 (1994).

    Article  CAS  Google Scholar 

  13. Lecuit, T.et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  15. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  Google Scholar 

  16. Neumann, C. J. & Cohen, S. M. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124, 871–880 (1997).

    CAS  Google Scholar 

  17. Kalderon, D. Morphogenetic signalling. Responses to hedgehog. Curr. Biol. 5, 580–582 (1995).

    Article  CAS  Google Scholar 

  18. Zecca, M., Basler, K. & Struhl, G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121, 2265–2278 (1995).

    CAS  Google Scholar 

  19. Nusse, R. Patching up Hedgehog. Nature 384, 119–120 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Ruiz i Altaba, A. Catching a Gli-mpse of Hedgehog. Cell 90, 193–196 (1997).

    Article  Google Scholar 

  21. Irvine, K. & Vogt, T. F. Dorsal-ventral signaling in limb development. Curr. Opin. Cell. Biol. 9, 867–876 (1997).

    Article  CAS  Google Scholar 

  22. Campuzano, S. & Modolell, J. Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genet. 8, 202–208 (1992).

    Article  CAS  Google Scholar 

  23. Kominami, K. & Toda, T. Fission yeast WD-repeat protein Pop1 regulates genome ploidy through ubiquitin-proteasome-mediated degradatin ofthe CDK inhibitor Rum1 and the S-phase initiator Cdc18. Genes Dev. 11, 1548–1560 (1997).

    Article  CAS  Google Scholar 

  24. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processign the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    Article  CAS  Google Scholar 

  25. Spevak, W., Keiper, B. D., Stratowa, C. & Castanon, M. J. Saccharomyces cerevisiae cdc15 mutants arrested at a late stage in anaphase are rescued by Xenopus cDNAs encoding N-ras or a protein with beta-transducin repeats. Mol. Cell. Biol. 13, 4953–4966 (1993).

    Article  CAS  Google Scholar 

  26. Yost, C.et al. The axis-inducing activity, stability and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996).

    Article  CAS  Google Scholar 

  27. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  Google Scholar 

  28. Peifer, M. β-catenin as oncogene: The smoking gun. Science 275, 1752–1753 (1997).

    Article  CAS  Google Scholar 

  29. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).

    Article  CAS  Google Scholar 

  30. Jiang, J. & Struhl, G. Complementary and mutually exclusive activities of decapentaplegic and wingless organize axial patterning during Drosophila leg development. Cell 86, 401–409 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Adachi and Q. Zhou for technical assistance; W. Strapps for help with western analysis; S. Carroll, S. Cohen, R. Holmgren, M. Peifer, M. Hoffman, G. Panganiban and T.Kornberg for antibodies; the Bloomington stock centre for fly stocks; and I. Greenwald, T. Jessell, R.Mann and A. Tomlinson for discussion and comments on the manuscript. J.J. is an NIH postdoctoral trainee; G.S. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Struhl, G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391, 493–496 (1998). https://doi.org/10.1038/35154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35154

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing