Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oceanic signals in observed motions of the Earth's pole of rotation

Abstract

Motion of the Earth's pole of rotation relative to its crust, commonly referred to as polar motion, can be excited by a variety of geophysical mechanisms1. In particular, changes in atmospheric wind and mass fields have been linked to polar motion over a wide range of timescales, but substantial discrepancies remain between the atmospheric and geodetic observations1,2,3,4. Here we present results from a nearly global ocean model which indicate that oceanic circulation and mass-field variability play important roles in the excitation of seasonal to fortnightly polar motion. The joint oceanic and atmospheric excitation provides a better agreement with the observed polar motion than atmospheric excitation alone. Geodetic measurements may therefore be used to provide a global consistency check on the quality of simulated large-scale oceanic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Five-day averaged values of χ1O and χ2O for the period January 85–April 96.
Figure 2: Power spectral density for oceanic χ1P (solid line), χ1V (dotted), χ2P (dashed) and χ2V (dotted-dashed) calculated by averaging respective periodograms over 20 adjacent frequencies.
Figure 3: Assessment of oceanic effects on the excitation of polar motion.

Similar content being viewed by others

References

  1. Eubanks, T. M. in Contributions of Space Geodesy to Geodynamics: Earth Dynamics 1–54 (eds Smith, D. & Turcotte, D.) (AGU Monogr., Geodynamics Ser., Vol. 24, Am. Geophys. Un., Washington DC, 1993).

    Book  Google Scholar 

  2. Eubanks, T. M., Steppe, J. A., Dickey, J. O., Rosen, R. D. & Salstein, D. A. Causes of rapid motions of the Earth's pole. Nature 334, 115–119 (1988).

    Article  ADS  Google Scholar 

  3. Gross, R. S. & Lindqwister, U. J. Atmospheric excitation of polar motion during the GIG '91 measurement campaign. Geophys. Res. Lett. 19, 849–852 (1992).

    Article  ADS  Google Scholar 

  4. Chao, B. F. Excitation of Earth's polar motion by atmospheric angular momentum variations, 1980–1990. Geophys. Res. Lett. 20, 253–256 (1993).

    Article  ADS  Google Scholar 

  5. Barnes, R. T. H., Hide, R., White, A. A. & Wilson, C. A. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. Lond. A 387, 31–73 (1983).

    Article  ADS  Google Scholar 

  6. Wilson, C. R. & Haubrich, R. A. Meteorological excitation of the Earth's wobble. Geophys. J. R. Astron. Soc. 46, 707–743 (1976).

    Article  ADS  Google Scholar 

  7. Wahr, J. M. The effects of the atmosphere and oceans on the Earth's wobble and on the seasonal variation in the length of day — II. Results. Geophys. J. R. Astron. Soc. 74, 451–487 (1983).

    ADS  Google Scholar 

  8. Salstein, D. A., Ponte, R. M., Rosen, R. D. & Cady-Pereira, K. Angular momentum in a free-surface ocean general circulation model. Eos (Spring Meeting Suppl.) 76, 82 (1995).

    Google Scholar 

  9. Bryan, F. O. & Smith, R. D. Oceanic excitation of variations in Earth rotation from a high resolution global model. Eos (Fall Meeting Suppl.) 76, 61 (1995).

    Google Scholar 

  10. Ponte, R. M. Oceanic excitation of daily to seasonal signals in Earth rotation: results from a constant-density numerical model. Geophys. J. Int. 130, 469–474 (1997).

    Article  ADS  Google Scholar 

  11. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. Afinite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997).

    Article  ADS  Google Scholar 

  12. Marshall, J., Hill, C., Perelman, L. & Adcroft, A. Hydrostatic, quasi-hydrostatic and non-hydrostatic ocean modeling. J. Geophys. Res. 102, 5733–5752 (1997).

    Article  ADS  Google Scholar 

  13. Levitus, S., Burgett, R. & Boyer, T. World Ocean Atlas 1994 Vol. 3, Salinityand Vol. 4,Temperature (NOAA Atlas NESDIS 3 and 4, US Dept of Commerce, Washington DC, 1994).

    Google Scholar 

  14. Barnier, B., Siefridt, L. & Marchesiello, P. Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Sys. 6, 363–380 (1995).

    Article  Google Scholar 

  15. Jayne, S. & Marotzke, J. Adestabilizing thermohaline circulation — atmosphere — sea ice feedback. J.Clim. (submitted).

  16. Stammer, D.et al. The Global Ocean Circulation Estimated from TOPEX/POSEIDON Altimetry and the MIT General Circulation Model (Rep. 49, MIT Center of Global Change Science, Cambridge, 1997).

    Google Scholar 

  17. Greatbatch, R. J. Anote on the representation of steric sea level in models that conserve volume rather than mass. J. Geophys. Res. 99, 12767–12771 (1994).

    Article  ADS  Google Scholar 

  18. Salstein, D. A., Kann, D. M., Miller, A. J. & Rosen, R. D. The sub-bureau for atmospheric angular momentum of the international earth rotation service: a meteorological data center with geodetic applications. Bull. Am. Meteor. Soc. 74, 67–80 (1993).

    Article  Google Scholar 

  19. Wilson, C. R. Discrete polar motion equations. Geophys. J. R. Astron. Soc. 80, 551–554 (1985).

    Article  ADS  Google Scholar 

  20. Salstein, D. A. Monitoring atmospheric winds and pressures for Earth orientation studies. Adv. Space Res. 13, 11175–11184 (1993).

    Article  Google Scholar 

  21. Salstein, D. A. & Rosen, R. D. in Proc. 7th Conf. on Climate Variations 344–348 (Am. Meteorol. Soc., Boston, 1997).

    Google Scholar 

  22. Rosen, R. D. The axial momentum balance of Earth and its fluid envelope. Surv. Geophys. 14, 1–29 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Spiegel for help with the computation, and F. Bryan, B. Chao, R. Rosen and D. Salstein for comments. This work was supported by NASA's Mission to Planet Earth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui M. Ponte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponte, R., Stammer, D. & Marshall, J. Oceanic signals in observed motions of the Earth's pole of rotation. Nature 391, 476–479 (1998). https://doi.org/10.1038/35126

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35126

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing