Abstract
Cambrian fossil-Lagerstätten (sites of exceptional fossil preservation), such as those from Chengjiang (Lower Cambrian) and the Burgess Shale (Middle Cambrian), provide our best window into the Cambrian ‘explosion’. Such faunas are known from about 40 localities, and have yielded a widely disparate series of taxa ranging from ctenophores to agnathan fish. Recent excavations of the Chengjiang fossil-Lagerstätte, known from a series of sites near Kunming in Yunnan, south China, have resulted in the discovery of several new forms. In conjunction with material described earlier, these provide evidence for a new group of metazoans, the vetulicolians. Several features, notably a series of gill slits, suggest that this group can throw light on an early stage of deuterostome diversification.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Symbiotic fouling of Vetulicola, an early Cambrian nektonic animal
Communications Biology Open Access 18 September 2020
-
A new vetulicolian from Australia and its bearing on the chordate affinities of an enigmatic Cambrian group
BMC Evolutionary Biology Open Access 21 October 2014
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Conway Morris, S. Evolution: Bringing molecules into the fold. Cell 100, 1–11 (2000).
Valentine, J. W., Jablonski, D. & Erwin, D. H. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126, 851–859 (1999).
Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).
Fioroni, P. Zur Signifikanz des Blastoporus-Verhaltens in evolutiver Hinisicht. Rev. Suisse Zool. 87, 261–272 (1980).
Ogasawara, M. et al. Developmental expression of Pax 1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development 125, 2539–2550 (1999).
Okai, N. et al. Characterization of gill-specific genes of the acorn worm Ptychodera flava. Dev. Dyn. 217, 309–319 (2000).
Ogasawara, M. et al. Ascidian homologs of mammalian thyroid transcription Factor-1 gene are expressed in the endostyle. Zool. Sci. 16, 559–565 (1999).
Ruppert, E. E., Cameron, C. B. & Frick, J. F. Endostyle-like features of the dorsal epibranchial ridge of an enteropneust and the hypothesis of dorsal-ventral axis inversion in chordates. Invert. Biol. 118, 202–212 (1999).
Peterson, K. J. et al. A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development 126, 85–95 (1999).
Schaeffer, B. Deuterostome monophyly and phylogeny. Evol. Biol. 21, 179–235 (1987).
Turbeville, J. M., Schulz, J. R. & Raff, R. A. Deuterostome phylogeny and the sister group fo the chordates: evidence from molecules and morphology. Mol. Biol. Evol. 11, 648–655 (1994).
Wada, H. & Satoh, N. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc. Natl Acad. Sci. USA 91, 1801–1804 (1994).
Lacalli, T. C. The nature and origin of deuterostomes: some unresolved issues. Invert. Biol. 116, 363–370 (1997).
Bromham, L. D. & Degnan, B. M. Hemichordate and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol. Dev. 1, 166–171 (1999).
Cameron, C. B., Garey, J. R. & Swalla, B. J. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proc. Natl Acad. Sci. USA 97, 4469–4474 (2000).
Gee, H. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) Syst. Ass. Spec. 61, 1–14 (2001).
Chen, J.-Y. & Zhou, G.-Q. Biology of the Chengjiang fauna. Bull. Natl Mus. Nat. Sci. Taiwan 10, 11–105 (1997).
Shu, D.-G. et al. A pipiscid-like fossil from the Lower Cambrian of south China. Nature 400, 746–749 (1999).
Luo, H.-L. et al. Early Cambrian Chengjiang Fauna from Kunming Region, China (Yunnan Sci. Technol. Press, Kunming, 1999).
Hou, X.-G. Early Cambrian large bivalved arthropods from Chengjiang, eastern Yunnan. Acta Palaeont. Sinica 26, 286–297 (1987).
Chen, J.-Y. et al. The Chengjiang Biota: A Unique Window of the Cambrian Explosion (National Museum of Natural Science, Taiwan, 1996).
Zhang, X.-L. et al. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. J. Geol. Soc. Lond. 158, 211–218 (2001).
Gilmour, T. H. J. Feeding in pterobranch hemichordates and the evolution of gill slits. Can. J. Zool. 57, 1136–1142 (1979).
Gilmour, T. H. J. Feeding in tornaria larvae and the development of gill slits in enteropneust hemichordates. Can. J. Zool. 60, 3010–3020 (1982).
Jefferies, R. P. S. The Ancestry of the Vertebrates (British Museum (Natural History), London, 1986).
Chen, J.-Y., Huang, D. Y. & Li, C. W. An early Cambrian craniate-like chordate. Nature 402, 518–522 (1999).
Chen, J.-Y. et al. A possible early Cambrian chordate. Nature 377, 720–722 (1995).
Shu, D.-G., Zhang, X. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996).
Dzik, J. Yunnanozoon and the ancestry of chordates. Acta Palaeont. Polonica 40, 341–360 (1995).
Holland, N. D. & Chen, J.-Y. Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and paleontology. BioEssays 23, 142–151 (2001).
Shu, D.-G., Chen, L., Zhang, X.-L., Han, J. & Li, Y. Chengjiang Lagerstatte and earliest-known chordates. Zool. Sci. 18, 447–448 (2001).
Hou, X.-G. et al. The Chengjiang Fauna: Exceptionally Well-preserved Animals From 530 Million Years Ago (Yunnan Sci. Technol. Press, Kunming, 1999).
Hou, X.-G. & Bergström, J. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils Strata 45, 1–116 (1997).
Shu, D.-G., Zhang, X.-L. & Chen, L. in Progress in Geology of China (1993–1996) (Papers to 30th International Geological Congress) 42–45 (Chinese Geological Society, Beijing, 1996).
Romer, A. S. The vertebrate as a dual animal–somatic and visceral. Evol. Biol. 6, 121–156 (1972).
Romer, A. S. The Vertebrate Body (Saunders, Philadelphia, 1964).
Walcott, C. D. Middle Cambrian annelids. Smithson. Misc. Coll. 57, 109–144 (1911).
Taguchi, S. et al. Characterization of a hemichordate fork head/HNF-3 gene expression. Dev. Genes Evol. 210, 11–17 (2000).
Tagawa, K., Humphreys, T. & Satoh, N. Novel pattern of Brachyury gene expression in hemichordate embryos. Mech. Dev. 75, 139–143 (1998).
Lacalli, T. C. Apical organs, epithelial domains, and the origin of the chordate central nervous system. Am. Zool. 34, 533–541 (1994).
Tagawa, K., Humphreys, T. & Satoh, N. T-Brain expression in the apical organ of hemichordate tornaria larvae suggest its evolutionary link to the vertebrate forebrain. J. Exp. Zool. (Mol. Dev. Evol) 288, 23–31 (2000).
Nielsen, C. Origin of the chordate central nervous system and the origin of chordates. Dev. Genes Evol. 209, 198–205 (1999).
Gee, H. Before the Backbone: Views on the Origin of the Vertebrates (Chapman & Hall, London, 1996).
Shu, D.-G. et al. Lower Cambrian vertebrates from South China. Nature 402, 42–46 (1999).
Acknowledgements
Supported by Ministry of Sciences and Technology of China, Natural Science Foundation of China, Education Department of China, and National Geographic, USA (D.-G.S., J.H., L.C., X.-L.Z., Z.-F.Z., H.-Q.L., Y.L. and J.-N.L.), the Royal Society, and St. John's College, Cambridge (S.C.M.). H.-L. Luo and S.-X. Hu gave access to material of Pomatrum in Kunming. We thank R. J. Aldridge, P. Janvier and R. P. S. Jefferies for comments, and L.-H. Guo, X.-X. Cheng, H.-X. Guo, S. J. Last and S. Capon for technical assistance.
Author information
Authors and Affiliations
Corresponding author
Supplementary information

Figure I.
Additional Vetulicolians. (JPG 119 KB)
a,b, Didazoon haoae, a, ELI-0000197, two superimposed specimen s, upper with intestine in posterior section showing spiral arrangement of contents, lower with excavated anterior section showing gills and possible endostyle; b, ELI-0000199, with incompletely preserved anterior section and recurved posterior.
c,d, Xidazoon stephanus, c, Specimen ELI-0000206, anterior section with mouth region. d, Specimen ELI-0000205A, ventral view of anterior section showing mouth cone and possible endostyle.
e,f, Vetulicola cuneata, e, ELI-0000214, entire specimen with prominent gills. f, ELI-0000485, entire specimen with prominent gill-tubes.
g,h, Vetulicola rectangulata, g, ELI-0000306B, complete specimen; h, ELI-0000318, complete specimen. Scale bars millimetric

Figure II.
Gill structures of Vetulicola cuneata (c,g;d,h;i,m;k,o;q,u;t,x) and V. rectangulata (a,e;b,f;j,n;l,p;r,v;s,w). (JPG 94.2 KB)
a,e, specimen ELI-0000317A; b,f, specimen ELI-0000306B; c,g, specimen ELI-0000207; d,h, specimen ELI-0000215; i,m, specimen ELI-0000207; j,n, specimen ELI-0000337B;
k,o, specimen ELI-0000274; l,p, specimen ELI-0000338A; q,u, specimen ELI-0000214;
r,v, specimen ELI-0000306A; s,w, specimen ELI-0000270; t,x, specimen ELI-0000256.
Scale bars millimetric

Figure III.
Coiled gut of Vetulicola cuneata. (JPG 86.4 KB)
a,b, specimen ELI-0000309A; c,d, specimen ELI-0000255.
Scale bars millimetric

Figure IV.
Surface membranes (see arrows) of Vetulicola cuneata (a,g,h,k-n,p-r) and V. rectangulata (b-f,i,j,o). (JPG 130 KB)
a,b, anterior of specimens ELI-0000346 and ELI-0000264;
c-i, posterior and ventral margins of the anterior section of specimens, ELI-0000317A, 317A, 322, 380, 255,320, 260 respectively;
j, membrane along the lateral mid-line tube and gills of specimen ELI-0000338A;
k-o, dorsal °∞fin°± and dorso-posterior margins of specimens ELI-0000320, 319,338A, 261,210 respectively;
p-r, membranes along margins of posterior section of specimens ELI-0000302A, 313, 312B respectively.
Scale bars millimetric
Rights and permissions
About this article
Cite this article
Shu, DG., Morris, S., Han, J. et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature 414, 419–424 (2001). https://doi.org/10.1038/35106514
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35106514
This article is cited by
-
Saccorhytus is an early ecdysozoan and not the earliest deuterostome
Nature (2022)
-
Symbiotic fouling of Vetulicola, an early Cambrian nektonic animal
Communications Biology (2020)
-
Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)
Nature (2017)
-
Heritage status could safeguard fossil beds
Nature (2017)
-
New observations on Vetulicola longbaoshanensis from the Lower Cambrian Guanshan Biota (Series 2, Stage 4), South China
Science China Earth Sciences (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.