Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China)

Abstract

Cambrian fossil-Lagerstätten (sites of exceptional fossil preservation), such as those from Chengjiang (Lower Cambrian) and the Burgess Shale (Middle Cambrian), provide our best window into the Cambrian ‘explosion’. Such faunas are known from about 40 localities, and have yielded a widely disparate series of taxa ranging from ctenophores to agnathan fish. Recent excavations of the Chengjiang fossil-Lagerstätte, known from a series of sites near Kunming in Yunnan, south China, have resulted in the discovery of several new forms. In conjunction with material described earlier, these provide evidence for a new group of metazoans, the vetulicolians. Several features, notably a series of gill slits, suggest that this group can throw light on an early stage of deuterostome diversification.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The Lower Cambrian vetulicolian Didazoon haoae Shu & Han gen. et sp. nov. from Dabanqiao, Yunnan.
Figure 5: Coiled guts (arrows in a and b) and surface membranes (arrows in cf) of vetulicolians.
Figure 2: The Lower Cambrian vetulicolian Xidazoon stephanus from Haikou, Kunming.
Figure 3: Gill structures of vetulicolians.
Figure 4: The Lower Cambrian vetulicolian Vetulicola cuneata (ae) from Chengjiang and Vetulicola rectangulata (f, g) from Haikou, Kunming.
Figure 6: The Lower Cambrian Yunnanozoon lividum from Chengjiang, Yunnan.

References

  1. Conway Morris, S. Evolution: Bringing molecules into the fold. Cell 100, 1–11 (2000).

    CAS  Google Scholar 

  2. Valentine, J. W., Jablonski, D. & Erwin, D. H. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126, 851–859 (1999).

    CAS  PubMed  Google Scholar 

  3. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).

    CAS  PubMed  Google Scholar 

  4. Fioroni, P. Zur Signifikanz des Blastoporus-Verhaltens in evolutiver Hinisicht. Rev. Suisse Zool. 87, 261–272 (1980).

    Google Scholar 

  5. Ogasawara, M. et al. Developmental expression of Pax 1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development 125, 2539–2550 (1999).

    Google Scholar 

  6. Okai, N. et al. Characterization of gill-specific genes of the acorn worm Ptychodera flava. Dev. Dyn. 217, 309–319 (2000).

    CAS  PubMed  Google Scholar 

  7. Ogasawara, M. et al. Ascidian homologs of mammalian thyroid transcription Factor-1 gene are expressed in the endostyle. Zool. Sci. 16, 559–565 (1999).

    CAS  Google Scholar 

  8. Ruppert, E. E., Cameron, C. B. & Frick, J. F. Endostyle-like features of the dorsal epibranchial ridge of an enteropneust and the hypothesis of dorsal-ventral axis inversion in chordates. Invert. Biol. 118, 202–212 (1999).

    Google Scholar 

  9. Peterson, K. J. et al. A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development 126, 85–95 (1999).

    CAS  PubMed  Google Scholar 

  10. Schaeffer, B. Deuterostome monophyly and phylogeny. Evol. Biol. 21, 179–235 (1987).

    Google Scholar 

  11. Turbeville, J. M., Schulz, J. R. & Raff, R. A. Deuterostome phylogeny and the sister group fo the chordates: evidence from molecules and morphology. Mol. Biol. Evol. 11, 648–655 (1994).

    CAS  PubMed  Google Scholar 

  12. Wada, H. & Satoh, N. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc. Natl Acad. Sci. USA 91, 1801–1804 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lacalli, T. C. The nature and origin of deuterostomes: some unresolved issues. Invert. Biol. 116, 363–370 (1997).

    Google Scholar 

  14. Bromham, L. D. & Degnan, B. M. Hemichordate and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol. Dev. 1, 166–171 (1999).

    CAS  PubMed  Google Scholar 

  15. Cameron, C. B., Garey, J. R. & Swalla, B. J. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proc. Natl Acad. Sci. USA 97, 4469–4474 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gee, H. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) Syst. Ass. Spec. 61, 1–14 (2001).

    Google Scholar 

  17. Chen, J.-Y. & Zhou, G.-Q. Biology of the Chengjiang fauna. Bull. Natl Mus. Nat. Sci. Taiwan 10, 11–105 (1997).

    Google Scholar 

  18. Shu, D.-G. et al. A pipiscid-like fossil from the Lower Cambrian of south China. Nature 400, 746–749 (1999).

    ADS  CAS  Google Scholar 

  19. Luo, H.-L. et al. Early Cambrian Chengjiang Fauna from Kunming Region, China (Yunnan Sci. Technol. Press, Kunming, 1999).

    Google Scholar 

  20. Hou, X.-G. Early Cambrian large bivalved arthropods from Chengjiang, eastern Yunnan. Acta Palaeont. Sinica 26, 286–297 (1987).

    Google Scholar 

  21. Chen, J.-Y. et al. The Chengjiang Biota: A Unique Window of the Cambrian Explosion (National Museum of Natural Science, Taiwan, 1996).

    Google Scholar 

  22. Zhang, X.-L. et al. New sites of Chengjiang fossils: crucial windows on the Cambrian explosion. J. Geol. Soc. Lond. 158, 211–218 (2001).

    Google Scholar 

  23. Gilmour, T. H. J. Feeding in pterobranch hemichordates and the evolution of gill slits. Can. J. Zool. 57, 1136–1142 (1979).

    Google Scholar 

  24. Gilmour, T. H. J. Feeding in tornaria larvae and the development of gill slits in enteropneust hemichordates. Can. J. Zool. 60, 3010–3020 (1982).

    Google Scholar 

  25. Jefferies, R. P. S. The Ancestry of the Vertebrates (British Museum (Natural History), London, 1986).

    Google Scholar 

  26. Chen, J.-Y., Huang, D. Y. & Li, C. W. An early Cambrian craniate-like chordate. Nature 402, 518–522 (1999).

    ADS  CAS  Google Scholar 

  27. Chen, J.-Y. et al. A possible early Cambrian chordate. Nature 377, 720–722 (1995).

    ADS  CAS  Google Scholar 

  28. Shu, D.-G., Zhang, X. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996).

    ADS  CAS  Google Scholar 

  29. Dzik, J. Yunnanozoon and the ancestry of chordates. Acta Palaeont. Polonica 40, 341–360 (1995).

    Google Scholar 

  30. Holland, N. D. & Chen, J.-Y. Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and paleontology. BioEssays 23, 142–151 (2001).

    CAS  PubMed  Google Scholar 

  31. Shu, D.-G., Chen, L., Zhang, X.-L., Han, J. & Li, Y. Chengjiang Lagerstatte and earliest-known chordates. Zool. Sci. 18, 447–448 (2001).

    Google Scholar 

  32. Hou, X.-G. et al. The Chengjiang Fauna: Exceptionally Well-preserved Animals From 530 Million Years Ago (Yunnan Sci. Technol. Press, Kunming, 1999).

    Google Scholar 

  33. Hou, X.-G. & Bergström, J. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils Strata 45, 1–116 (1997).

    Google Scholar 

  34. Shu, D.-G., Zhang, X.-L. & Chen, L. in Progress in Geology of China (1993–1996) (Papers to 30th International Geological Congress) 42–45 (Chinese Geological Society, Beijing, 1996).

    Google Scholar 

  35. Romer, A. S. The vertebrate as a dual animal–somatic and visceral. Evol. Biol. 6, 121–156 (1972).

    Google Scholar 

  36. Romer, A. S. The Vertebrate Body (Saunders, Philadelphia, 1964).

    Google Scholar 

  37. Walcott, C. D. Middle Cambrian annelids. Smithson. Misc. Coll. 57, 109–144 (1911).

    Google Scholar 

  38. Taguchi, S. et al. Characterization of a hemichordate fork head/HNF-3 gene expression. Dev. Genes Evol. 210, 11–17 (2000).

    CAS  PubMed  Google Scholar 

  39. Tagawa, K., Humphreys, T. & Satoh, N. Novel pattern of Brachyury gene expression in hemichordate embryos. Mech. Dev. 75, 139–143 (1998).

    CAS  PubMed  Google Scholar 

  40. Lacalli, T. C. Apical organs, epithelial domains, and the origin of the chordate central nervous system. Am. Zool. 34, 533–541 (1994).

    Google Scholar 

  41. Tagawa, K., Humphreys, T. & Satoh, N. T-Brain expression in the apical organ of hemichordate tornaria larvae suggest its evolutionary link to the vertebrate forebrain. J. Exp. Zool. (Mol. Dev. Evol) 288, 23–31 (2000).

    CAS  Google Scholar 

  42. Nielsen, C. Origin of the chordate central nervous system and the origin of chordates. Dev. Genes Evol. 209, 198–205 (1999).

    CAS  PubMed  Google Scholar 

  43. Gee, H. Before the Backbone: Views on the Origin of the Vertebrates (Chapman & Hall, London, 1996).

    Google Scholar 

  44. Shu, D.-G. et al. Lower Cambrian vertebrates from South China. Nature 402, 42–46 (1999).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

Supported by Ministry of Sciences and Technology of China, Natural Science Foundation of China, Education Department of China, and National Geographic, USA (D.-G.S., J.H., L.C., X.-L.Z., Z.-F.Z., H.-Q.L., Y.L. and J.-N.L.), the Royal Society, and St. John's College, Cambridge (S.C.M.). H.-L. Luo and S.-X. Hu gave access to material of Pomatrum in Kunming. We thank R. J. Aldridge, P. Janvier and R. P. S. Jefferies for comments, and L.-H. Guo, X.-X. Cheng, H.-X. Guo, S. J. Last and S. Capon for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-G. Shu.

Supplementary information

Figure I.

Additional Vetulicolians. (JPG 119 KB)

a,b, Didazoon haoae, a, ELI-0000197, two superimposed specimen s, upper with intestine in posterior section showing spiral arrangement of contents, lower with excavated anterior section showing gills and possible endostyle; b, ELI-0000199, with incompletely preserved anterior section and recurved posterior.

c,d, Xidazoon stephanus, c, Specimen ELI-0000206, anterior section with mouth region. d, Specimen ELI-0000205A, ventral view of anterior section showing mouth cone and possible endostyle.

e,f, Vetulicola cuneata, e, ELI-0000214, entire specimen with prominent gills. f, ELI-0000485, entire specimen with prominent gill-tubes.

g,h, Vetulicola rectangulata, g, ELI-0000306B, complete specimen; h, ELI-0000318, complete specimen. Scale bars millimetric

Figure II.

Gill structures of Vetulicola cuneata (c,g;d,h;i,m;k,o;q,u;t,x) and V. rectangulata (a,e;b,f;j,n;l,p;r,v;s,w). (JPG 94.2 KB)

a,e, specimen ELI-0000317A; b,f, specimen ELI-0000306B; c,g, specimen ELI-0000207; d,h, specimen ELI-0000215; i,m, specimen ELI-0000207; j,n, specimen ELI-0000337B;

k,o, specimen ELI-0000274; l,p, specimen ELI-0000338A; q,u, specimen ELI-0000214;

r,v, specimen ELI-0000306A; s,w, specimen ELI-0000270; t,x, specimen ELI-0000256.

Scale bars millimetric

Figure III.

Coiled gut of Vetulicola cuneata. (JPG 86.4 KB)

a,b, specimen ELI-0000309A; c,d, specimen ELI-0000255.

Scale bars millimetric

Figure IV.

Surface membranes (see arrows) of Vetulicola cuneata (a,g,h,k-n,p-r) and V. rectangulata (b-f,i,j,o). (JPG 130 KB)

a,b, anterior of specimens ELI-0000346 and ELI-0000264;

c-i, posterior and ventral margins of the anterior section of specimens, ELI-0000317A, 317A, 322, 380, 255,320, 260 respectively;

j, membrane along the lateral mid-line tube and gills of specimen ELI-0000338A;

k-o, dorsal °∞fin°± and dorso-posterior margins of specimens ELI-0000320, 319,338A, 261,210 respectively;

p-r, membranes along margins of posterior section of specimens ELI-0000302A, 313, 312B respectively.

Scale bars millimetric

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shu, DG., Morris, S., Han, J. et al. Primitive deuterostomes from the Chengjiang Lagerstätte (Lower Cambrian, China). Nature 414, 419–424 (2001). https://doi.org/10.1038/35106514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35106514

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing